
z/OS
Integrated Cryptographic Service Facility

Application Programmer’s Guide

SA22-7522-02

���

z/OS
Integrated Cryptographic Service Facility

Application Programmer’s Guide

SA22-7522-02

���

Note!
Before using this information and the product it supports, be sure to read the general information in the “Notices” on
page 453.

Third Edition (March 2002)

This is a major revision of SA22-7522-01.

This edition applies to Version 1 Release 3 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xv

Tables . xvii

About This Book . xxi
Who Should Use This Book . xxi
How To Use This Book . xxi
Where To Find More Information xxiii

Related Publications . xxiii
Using LookAt to look up message explanations xxiv
Accessing licensed books on the Web xxv

Do You Have Problems, Comments, or Suggestions? xxvi

Summary of changes . xxvii

Part 1. IBM CCA Programming . 1

Chapter 1. Introducing Programming for the IBM CCA 3
Callable Service Syntax . 3

Callable Services with ALET Parameters 4
Rules for Defining Parameters and Attributes 4
Parameter Definitions . 6
Invocation Requirements. 8
Security Considerations . 8

Performance Considerations . 8
Special Secure Mode . 9
Using the Callable Services. 9

When the Call Succeeds . 10
When the Call Does Not Succeed 10

Linking a Program with the ICSF Callable Services 11

Chapter 2. Introducing DES Cryptography and Using DES Callable
Services . 13

Functions of the DES Cryptographic Keys 13
Key Separation . 13
Master Key Variant . 14
Transport Key Variant . 14
Key Forms . 14
Key Token . 15
Control Vector . 16
Types of Keys . 17

Generating and Managing DES Keys. 21
Key Generator Utility Program 21
Common Cryptographic Architecture DES Key Management Services. . . . 21
Callable Services for Dynamic CKDS Update. 24
Callable Services that Support Secure Sockets Layer (SSL) 25
System Encryption Algorithm 26
ANSI X9.17 Key Management Services 27

Enciphering and Deciphering Data. 28
Encoding and Decoding Data 29
Translating Ciphertext . 29
Managing Data Integrity and Message Authentication 29

Message Authentication Code Processing 29

© Copyright IBM Corp. 1997, 2002 iii

Hashing Functions . 31
Managing Personal Authentication 31

Verifying Credit Card Data. 32
Clear PIN Encrypt Callable Service 32
Clear PIN Generate Alternate Callable Service 32
Clear PIN Generate Callable Service 33
Encrypted PIN Generate Callable Service 33
Encrypted PIN Translate Callable Service 33
Encrypted PIN Verify Callable Service 33

Secure Messaging . 33
Trusted Key Entry (TKE) Support 33
Utilities . 34

Character/Nibble Conversion Callable Services 34
Code Conversion Callable Services 34
X9.9 Data Editing Callable Service 34

Typical Sequences of ICSF Callable Services 34
Key Forms and Types Used in the Key Generate Callable Service 35

Generating an Operational Key 35
Generating an Importable Key 36
Generating an Exportable Key 36
Examples of Single-Length Keys in One Form Only 36
Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in

Two Forms . 37
Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in

Two Forms . 37
Examples of IMEX Single-Length and Double-Length Keys in Two Forms 38
Examples of EXEX Single-Length and Double-Length Keys in Two Forms 38
Generating AKEKs . 38

Using the Ciphertext Translate Callable Service 39
Summary of the DES Callable Services 39

Chapter 3. Introducing PKA Cryptography and Using PKA Callable
Services . 47

PKA Key Algorithms . 47
The RSA Algorithm . 47
Digital Signature Standard (DSS) 47

PKA Master Keys . 47
PKA Callable Services . 48

Callable Services Supporting Digital Signatures 49
Callable Services for PKA Key Management 49
Callable Services to Update The Public Key Data Set (PKDS) 50
Callable Services for Working with Retained Private Keys 51
Callable Services for SET Secure Electronic Transaction 51

PKA Key Tokens . 52
PKA Key Management . 53
Invocation Requirements . 54
Security and Integrity of the Token. 54
Key Identifier for PKA Key Token 55

Key Label . 55
Key Token . 55

The Transaction Security System and ICSF Portability 57
Summary of the PKA Callable Services 57

Part 2. CCA Callable Services . 59

Chapter 4. Managing DES Cryptographic Keys 61

iv z/OS V1R3.0 ICSF Application Programmer’s Guide

Clear Key Import (CSNBCKI). 61
Format . 62
Parameters . 62
Usage Note . 63

Control Vector Generate (CSNBCVG) 63
Format . 63
Parameters . 63
Usage Notes. 65

Control Vector Translate (CSNBCVT). 65
Format . 65
Parameters . 66
Restriction . 68
Usage Notes. 68

Cryptographic Variable Encipher (CSNBCVE) 68
Format . 68
Parameters . 69
Restrictions . 70
Usage Note . 70

Data Key Export (CSNBDKX) 70
Format . 71
Parameters . 71
Usage Note . 72

Data Key Import (CSNBDKM) 72
Format . 72
Parameters . 72
Restriction . 73
Usage Notes. 73

Diversified Key Generate (CSNBDKG) 74
Format . 74
Parameters . 74
Restrictions . 77
Usage Notes. 77

Key Export (CSNBKEX) . 77
Format . 78
Parameters . 78
Usage Notes. 81

Key Generate (CSNBKGN) . 82
Format . 82
Parameters . 82
Restriction . 90
Usage Notes. 90

Key Import (CSNBKIM) . 92
Format . 93
Parameters . 93
Usage Notes. 96

Key Part Import (CSNBKPI) . 97
Format . 98
Parameters . 98
Restriction . 99
Usage Note . 99
Related Information . 99

Key Record Create (CSNBKRC) 100
Format . 100
Parameters . 100
Restrictions. 101
Usage Notes . 101

Contents v

Key Record Delete (CSNBKRD) 101
Format . 101
Parameters . 101
Restrictions. 102

Key Record Read (CSNBKRR) 102
Format . 103
Parameters . 103
Restrictions. 104

Key Record Write (CSNBKRW) 104
Format . 104
Parameters . 104
Restrictions. 105
Related Information . 105

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX). 105
Format . 106
Parameters . 106
Usage Notes . 108

Key Token Build (CSNBKTB) 109
Format . 109
Parameters . 109
Usage Notes . 115
Related Information . 118

Key Translate (CSNBKTR) . 118
Format . 119
Parameters . 119
Restrictions. 120
Usage Note . 120

Multiple Clear Key Import (CSNBCKM) 120
Format . 120
Parameters . 121
Usage Note . 122

Multiple Secure Key Import (CSNBSKM) 122
Format . 123
Parameters . 123
Usage Notes . 126

PKA Decrypt (CSNDPKD) . 126
Format . 127
Parameters . 127
Restrictions. 129
Usage Notes . 130

PKA Encrypt (CSNDPKE) . 130
Format . 130
Parameters . 130
Restrictions. 132
Usage Notes . 132

Prohibit Export (CSNBPEX). 133
Format . 133
Parameters . 133
Restriction . 134
Usage Note . 134

Prohibit Export Extended (CSNBPEXX) 134
Format . 134
Parameters . 134

Random Number Generate (CSNBRNG) 135
Format . 135
Parameters . 136

vi z/OS V1R3.0 ICSF Application Programmer’s Guide

Secure Key Import (CSNBSKI) 137
Format . 137
Parameters . 137

Symmetric Key Export (CSNDSYX) 140
Format . 140
Parameters . 141
Restrictions. 143
Usage Notes . 143

Symmetric Key Generate (CSNDSYG). 143
Format . 143
Parameters . 144
Restrictions. 146
Usage Notes . 146

Symmetric Key Import (CSNDSYI) 147
Format . 148
Parameters . 148
Restrictions. 150
Usage Notes . 150

Transform CDMF Key (CSNBTCK) 151
Format . 151
Parameters . 151
Restrictions. 152
Usage Notes . 152

User Derived Key (CSFUDK) 153
Format . 153
Parameters . 153
Usage Note . 155

Chapter 5. Protecting Data 157
Modes of Operation. 157

Cipher Block Chaining (CBC) Mode 157
Electronic Code Book (ECB) Mode 157
Triple DES Encryption . 158

Processing Rules . 158
Ciphertext Translate (CSNBCTT and CSNBCTT1) 159

Choosing Between CSNBCTT and CSNBCTT1 159
Format . 159
Parameters . 160
Restrictions. 162
Usage Note . 162

Decipher (CSNBDEC and CSNBDEC1) 162
Choosing Between CSNBDEC and CSNBDEC1 163
Format . 164
Parameters . 164
Restrictions. 168
Usage Note . 168
Related Information . 168

Decode (CSNBDCO) . 168
Considerations . 168
Format . 168
Parameters . 169
Restriction . 169

Encipher (CSNBENC and CSNBENC1) 170
Choosing between CSNBENC and CSNBENC1 171
Format . 172
Parameters . 172

Contents vii

Restrictions. 176
Related Information . 176

Encode (CSNBECO) . 177
Considerations . 177
Format . 177
Parameters . 177
Restriction . 178

Symmetric Key Decipher (CSNBSYD) 178
Format . 179
Parameters . 179
Usage Notes . 182

Symmetric Key Encipher (CSNBSYE) 183
Format . 183
Parameters . 183
Usage Notes . 187

Chapter 6. Verifying Data Integrity and Authenticating Messages 189
How MACs are Used . 189
How Hashing Functions Are Used 190

How MDCs Are Used . 190
MAC Generate (CSNBMGN and CSNBMGN1). 191

Choosing Between CSNBMGN and CSNBMGN1 191
Format . 192
Parameters . 192
Usage Notes . 195
Related Information . 195

MAC Verify (CSNBMVR and CSNBMVR1) 195
Choosing Between CSNBMVR and CSNBMVR1 196
Format . 196
Parameters . 196
Usage Notes . 199
Related Information . 200

MDC Generate (CSNBMDG and CSNBMDG1). 200
Choosing Between CSNBMDG and CSNBMDG1 200
Format . 200
Parameters . 201
Usage Notes . 204
Related Information . 204

One-Way Hash Generate (CSNBOWH and CSNBOWH1). 204
Format . 204
Parameters . 205
Usage Note . 207

Chapter 7. Financial Services 209
How Personal Identification Numbers (PINs) are Used 209
How VISA Card Verification Values Are Used 209
Translating Data and PINs in Networks 210
PIN Callable Services . 210

Generating a PIN . 210
Encrypting a PIN. 210
Generating a PIN Validation Value from an Encrypted PIN Block 210
Verifying a PIN . 210
Translating a PIN . 211
Algorithms for Generating and Verifying a PIN 211
Using PINs on Different Systems 211
PIN-Encrypting Keys . 211

viii z/OS V1R3.0 ICSF Application Programmer’s Guide

||
||
||
||
||
||
||
||

The PIN Profile . 212
PIN Block Format . 212
Format Control . 212
Pad Digit . 213
Recommendations for the Pad Digit 213
Current Key Serial Number 214
Clear PIN Encrypt (CSNBCPE) 214
Clear PIN Generate (CSNBPGN). 217
Clear PIN Generate Alternate (CSNBCPA) 220
Encrypted PIN Generate (CSNBEPG) 226
Encrypted PIN Translate (CSNBPTR) 230
Encrypted PIN Verify (CSNBPVR) 236
Secure Messaging for Keys (CSNBSKY) 242
Secure Messaging for PINs (CSNBSPN) 245
SET Block Compose (CSNDSBC) 249
SET Block Decompose (CSNDSBD) 253
VISA CVV Service Generate (CSNBCSG) 258
VISA CVV Service Verify (CSNBCSV) 261

Chapter 8. Using Digital Signatures 265
Digital Signature Generate (CSNDDSG) 265

Format . 266
Parameters . 266
Restrictions. 269

Digital Signature Verify (CSNDDSV) 269
Format . 270
Parameters . 270
Restrictions. 272
Usage Note . 272

Chapter 9. Managing PKA Cryptographic Keys 273
PKA Key Generate (CSNDPKG) 273

Format . 274
Parameters . 274
Restriction . 276
Usage Note . 276

PKA Key Import (CSNDPKI) 277
Format . 277
Parameters . 277
Restrictions. 279
Usage Notes . 279

PKA Key Token Build (CSNDPKB) 279
Format . 280
Parameters . 280
Usage Note . 289

PKA Key Token Change (CSNDKTC) 289
Format . 289
Parameters . 289
Usage Note . 290

PKA Public Key Extract (CSNDPKX) 291
Format . 291
Parameters . 291
Restriction . 292
Usage Notes . 292

PKDS Record Create (CSNDKRC) 293
Format . 293

Contents ix

||

Parameters . 293
Restriction . 294
Usage Note . 294

PKDS Record Delete (CSNDKRD) 294
Format . 294
Parameters . 294
Restrictions. 296
Usage Note . 296

PKDS Record Read (CSNDKRR) 296
Format . 296
Parameters . 296
Restriction . 297
Usage Note . 297

PKDS Record Write (CSNDKRW) 297
Format . 298
Parameters . 298
Restrictions. 299
Usage Note . 299

Retained Key Delete (CSNDRKD) 299
Format . 300
Parameters . 300
Restriction . 301
Usage Notes . 301

Retained Key List (CSNDRKL) 301
Format . 301
Parameters . 301
Restriction . 303
Usage Notes . 303

Chapter 10. Utilities . 305
Character/Nibble Conversion (CSNBXBC and CSNBXCB) 305

Format . 305
Parameters . 305
Usage Notes . 306

Code Conversion (CSNBXEA and CSNBXAE) 307
Format . 307
Parameters . 307
Usage Notes . 308

X9.9 Data Editing (CSNB9ED). 308
Format . 309
Parameters . 309
Usage Notes . 310

Chapter 11. Trusted Key Entry Workstation Interfaces 311
PCI Interface Callable Service (CSFPCI) 311

Format . 311
Parameters . 311
Restriction . 314
Usage Note . 315

PKSC Interface Callable Service (CSFPKSC) 315
Format . 315
Parameters . 315
Restrictions. 316

Chapter 12. Managing Keys According to the ANSI X9.17 Standard . . . 317
ANSI X9.17 EDC Generate (CSNAEGN) 317

x z/OS V1R3.0 ICSF Application Programmer’s Guide

Format . 317
Parameters . 317
Usage Notes . 319

ANSI X9.17 Key Export (CSNAKEX) 319
Format . 320
Parameters . 320
Usage Note . 324

ANSI X9.17 Key Import (CSNAKIM). 324
Format . 324
Parameters . 324
Usage Note . 328

ANSI X9.17 Key Translate (CSNAKTR) 328
Format . 329
Parameters . 329
Usage Note . 332

ANSI X9.17 Transport Key Partial Notarize (CSNATKN) 333
Format . 333
Parameters . 333
Usage Note . 334

Appendix A. ICSF and TSS Return and Reason Codes 335
ICSF Return Codes and Reason Codes 335

Return Codes . 335
ICSF Reason Codes for Return Code 0 (0) 336
ICSF Reason Codes for Return Code 4 (4) 336
ICSF Reason Codes for Return Code 8 (8) 338
ICSF Reason Codes for Return Code C (12) 351
ICSF Reason Codes for Return Code 10 (16) 355

Transaction Security System Return Codes and Reason Codes 355
TSS Reason Codes for Return Code 0 (0) 355
TSS Reason Codes for Return Code 4 (4) 356
Reason Codes for Return Code 8 (8) 357
TSS Reason Codes for Return Code C (12). 363
TSS Reason Codes for Return Code 10 (16) 363

Appendix B. Key Token Formats 365
Format of the DES Internal Key Token 365

Token Validation Value . 366
DES External Key Token . 366
DES Null Key Token . 367
Format of the RSA Public Key Token 368
Format of the DSS Public Key Token 369
Format of RSA Private External Key Tokens. 369

RSA Private Key Token, 1024-bit Modulus-Exponent External Form 370
RSA Private Key Token, 2048-bit Chinese Remainder Theorem External

Form . 371
Format of the DSS Private External Key Token 373
Format of the RSA Private Internal Key Token 374

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature 376

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCI
Cryptographic Coprocessor 376

RSA Private Key Token, 2048-bit Chinese Remainder Theorem Internal
Form . 378

Format of the DSS Private Internal Key Token 379
PKA Null Key Token . 381

Contents xi

Appendix C. Control Vectors and Changing Control Vectors with the CVT
Callable Service . 383

Control Vector Table . 383
Specifying a Control-Vector-Base Value 388

Changing Control Vectors with the Control Vector Translate Callable Service 393
Providing the Control Information for Testing the Control Vectors 393
Mask Array Preparation . 393
Selecting the Key-Half Processing Mode 395
When the Target Key-Token CV Is Null 397
Control Vector Translate Example 397

Appendix D. Coding Examples 399
C . 399
COBOL . 401
Assembler H . 403
PL/1 . 405

Appendix E. Using ICSF with BSAFE 411
Some BSAFE Basics . 411

Computing Message Digests and Hashes 411
Generating Random Numbers 411
Encrypting and Decrypting with DES 412
Generating and Verifying RSA Digital Signatures 412

Encrypting and Decrypting with RSA 413
Using the New Function Calls in Your BSAFE Application 413
Using the BSAFE KI_TOKEN 415
ICSF Triple DES via BSAFE 415
Retrieving ICSF Error Information 416

Appendix F. Cryptographic Algorithms and Processes 419
PIN Formats and Algorithms 419

PIN Notation . 419
PIN Block Formats . 419
PIN Extraction Rules . 421
IBM PIN Algorithms. 422
VISA PIN Algorithms . 428

Cipher Processing Rules . 430
CBC and ANSI X3.106 . 430
ANSI X9.23 and IBM 4700 430

Multiple Decipherment and Encipherment. 433
Multiple Encipherment of Single-length Keys 434
Multiple Decipherment of Single-length Keys 434
Multiple Encipherment of Double-length Keys 435
Multiple Decipherment of Double-length Keys 436
Multiple Encipherment of Triple-length Keys 437
Multiple Decipherment of Triple-length Keys 438

PKA92 Key Format and Encryption Process. 439
ANSI X9.17 Partial Notarization Method 441

Partial Notarization . 441
Transform CDMF Key Algorithm 442

Appendix G. EBCDIC and ASCII Default Conversion Tables 445

Appendix H. Access Control Points and Callable Services 447

Appendix I. Accessibility . 451

xii z/OS V1R3.0 ICSF Application Programmer’s Guide

Using assistive technologies 451
Keyboard navigation of the user interface. 451

Notices . 453
Programming Interface Information 454
Trademarks. 454

Index . 457

Contents xiii

xiv z/OS V1R3.0 ICSF Application Programmer’s Guide

Figures

1. The z/OS ICSF Library . xxiv
2. PKA Key Management. 53
3. Control Vector Base Bit Map (Common Bits and Key-Encrypting Keys) 385
4. Control Vector Base Bit Map (Data Operation Keys) 386
5. Control Vector Base Bit Map (PIN Processing Keys and Cryptographic Variable-Encrypting Keys) 387
6. Control Vector Base Bit Map (Key Generating Keys) 388
7. Control Vector Translate Callable Service Mask_Array Processing 395
8. Control Vector Translate Callable Service . 396
9. 3624 PIN Generation Algorithm . 423

10. GBP PIN Generation Algorithm . 424
11. PIN-Offset Generation Algorithm. 425
12. PIN Verification Algorithm . 427
13. GBP PIN Verification Algorithm . 428
14. PVV Generation Algorithm . 429
15. Multiple Encipherment of Single-length Keys . 434
16. Multiple Decipherment of Single-length Keys . 435
17. Multiple Encipherment of Double-length Keys . 436
18. Multiple Decipherment of Double-length Keys . 437
19. Multiple Encipherment of Triple-length Keys . 438
20. Multiple Decipherment of Triple-length Keys . 439
21. The CDMF Key Transformation Algorithm . 443

© Copyright IBM Corp. 1997, 2002 xv

xvi z/OS V1R3.0 ICSF Application Programmer’s Guide

Tables

1. Standard Return Code Values From ICSF Callable Services 6
2. Descriptions of Key Types . 18
3. Summary of Data Encryption Standard Bits . 27
4. Combinations of the Callable Services . 35
5. Summary of ICSF DES Callable Services. 39
6. Summary of PKA Key Token Sections . 53
7. Internal and External Private RSA Key Token Section Identifiers 55
8. Summary of PKA Callable Services . 57
9. Keywords for Control Vector Translate . 67

10. Rule Array Keywords for Diversified Key Generate 75
11. Key Type Values for the Key Export Callable Service 79
12. Key Form Values for the Key Generate Callable Service 83
13. Key Length Values for the Key Generate Callable Service. 85
14. Key Type Values for the Key Generate Callable Service 87
15. Key Generate Valid Key Types and Key Forms for a Single Key 91
16. Key Generate Valid Key Types and Key Forms for a Key Pair 91
17. Key Type Values for the Key Import Callable Service 94
18. Keywords for Key Part Import Control Information. 99
19. Keywords for Key Test and Key Test Extended Control Information 107
20. Key Type Values for the Key Token Build Callable Service 110
21. Keywords for Key Token Build Control Information 112
22. Control Vector Generate and Key Token Build Control Vector Keyword Combinations 116
23. Keywords for Multiple Clear Key Import Rule Array Control Information 121
24. Keywords for Multiple Secure Key Import Rule Array Control Information 124
25. Key Type Values for the Multiple Secure Key Import Callable Service 125
26. Keywords for PKA Decrypt . 128
27. Keywords for PKA Encrypt . 131
28. Keywords for the Form Parameter . 136
29. Key Type Values for the Secure Key Import Callable Service 138
30. Keywords for Symmetric Key Export Control Information 141
31. Keywords for Symmetric Key Generate Control Information. 144
32. Keywords for Symmetric Key Import Control Information 149
33. Keywords for User Derived Key Control Information 154
34. Keywords for the Decipher Rule Array Control Information 166
35. Keywords for the Encipher Rule Array Control Information 174
36. Symmetric Key Decipher Rule Array Keywords 180
37. Symmetric Key Encipher Rule Array Keywords 184
38. Keywords for MAC generate Control Information. 193
39. Keywords for MAC verify Control Information . 198
40. Keywords for MDC Generate Control Information 202
41. Keywords for One-Way Hash Generate Rule Array Control Information 206
42. Format of a PIN Profile . 212
43. Format Values of PIN Blocks . 212
44. Format of a Pad Digit. 213
45. Pad Digits for PIN Block Formats . 213
46. Format of a UKPT keyword . 214
47. Process Rules for the Clear PIN Encryption Callable Service 215
48. Process Rules for the Clear PIN Generate Callable Service 218
49. Array Elements for the Clear PIN Generate Callable Service 219
50. Array Elements Required by the Process Rule 220
51. Rule Array Elements for the Clear PIN Generate Alternate Service 223
52. Rule Array Keywords (First Element) for the Clear PIN Generate Alternate Service 223
53. PIN Extraction Method Keywords . 223

© Copyright IBM Corp. 1997, 2002 xvii

||
||

||

54. Data Array Elements for the Clear PIN Generate Alternate Service (IBM-PINO) 224
55. Data Array Elements for the Clear PIN Generate Alternate Service (VISA-PVV) 225
56. PIN Block Variant Constants (PBVCs) . 225
57. Process Rules for the Encrypted PIN Generate Callable Service 228
58. Array Elements for the Encrypted PIN Generate Callable Service 228
59. Array Elements Required by the Process Rule 229
60. Keywords for Encrypted PIN Translate . 232
61. Additional Names for PIN Formats . 235
62. PIN Block Variant Constants (PBVCs) . 235
63. Keywords for Encrypted PIN Verify . 238
64. Array Elements for the Encrypted PIN Verify Callable Service 240
65. Array Elements Required by the Process Rule 241
66. PIN Block Variant Constants (PBVCs) . 241
67. Rule Array Keywords for Secure Messaging for Keys 243
68. Rule Array Keywords for Secure Messaging for PINs 246
69. Keywords for SET Block Compose Control Information 250
70. Keywords for SET Block Compose Control Information 255
71. CVV Generate Rule Array Keywords . 260
72. CVV Verify Rule Array Keywords . 263
73. Keywords for Digital Signature Generate Control Information. 267
74. Keywords for Digital Signature Verify Control Information 271
75. Keyword for PKA Key Generate Rule Array. 275
76. Keywords for PKA Key Token Build Control Information 281
77. Key Value Structure Length Maximum Values for Key Types 282
78. Key Value Structure Elements for PKA Key Token Build 282
79. Rule Array Keywords for PKA Key Token Change (Required) 290
80. Keywords for PKDS Record Delete . 295
81. Keywords for PKDS Record Write . 299
82. Keywords for PCI Interface Callable Service . 312
83. Keywords for ANSI X9.17 Key Export Rule Array 321
84. Keywords for ANSI X9.17 Key Import Rule Array 325
85. Keywords for ANSI X9.17 Key Translate Rule Array 330
86. ICSF Return Codes . 335
87. ICSF Reason Codes for Return Code 0 (0). 336
88. ICSF Reason Codes for Return Code 4 (4). 337
89. ICSF Reason Codes for Return Code 8 (8). 338
90. ICSF Reason Codes for Return Code C (12) . 351
91. ICSF Reason Codes for Return Code 10 (16) . 355
92. TSS Reason Codes for Return Code 0 (0) . 355
93. TSS Reason Codes for Return Code 4 (4) . 356
94. TSS Reason Codes for Return Code 8 (8) . 357
95. TSS Reason Codes for Return Code C (12) . 363
96. TSS Reason Codes for Return Code 10 (16) . 363
97. Internal Key Token Format . 365
98. Format of External Key Tokens . 367
99. Format of Null Key Tokens . 368

100. RSA Public Key Token . 368
101. DSS Public Key Token . 369
102. RSA Private External Key Token Basic Record Format 370
103. RSA Private Key Token, 1024-bit Modulus-Exponent External Format 370
104. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format 371
105. DSS Private External Key Token . 373
106. RSA Private Internal Key Token Basic Record Format 374
107. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature 376
108. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor 376
109. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format 378

xviii z/OS V1R3.0 ICSF Application Programmer’s Guide

||

||

110. DSS Private Internal Key Token . 379
111. Format of PKA Null Key Tokens . 381
112. Default Control Vector Values. 383
113. PKA96 Clear DES Key Record . 439
114. EBCDIC to ASCII Default Conversion Table . 445
115. ASCII to EBCDIC Default Conversion Table . 446

Tables xix

xx z/OS V1R3.0 ICSF Application Programmer’s Guide

About This Book

This book describes how to use the callable services provided by the Integrated
Cryptographic Service Facility (ICSF). The z/OS Cryptographic Services includes
these components:

v Integrated Cryptographic Service Facility

v z/OS Open Cryptographic Services Facility (OCSF)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server (RACF) to provide secure, high-speed cryptographic
services. ICSF provides the application programming interfaces by which
applications request the cryptographic services.

Who Should Use This Book
This book is intended for application programmers who:

v Are responsible for writing application programs that use the security application
programming interface (API) to access cryptographic functions.

v Want to use ICSF callable services in high-level languages such as C, COBOL,
FORTRAN, and PL/I, as well as in assembler.

How To Use This Book
ICSF includes both Data Encryption Standard (DES) and public key cryptography.
These are two very different cryptographic systems.

Part 1 focuses on IBM CCA programming. It includes the following chapters:

v Chapter 1, “Introducing Programming for the IBM CCA” describes the
programming considerations for using the ICSF DES callable services. It also
explains the syntax and parameter definitions used in callable services.

v Chapter 2, “Introducing DES Cryptography and Using DES Callable Services”
gives an overview of DES cryptography and provides general guidance
information on how the DES callable services use different key types and key
forms. It also discusses how to write your own callable services called
installation-defined callable services and provides suggestions on what to do if
there is a problem.

v Chapter 3, “Introducing PKA Cryptography and Using PKA Callable Services”
introduces Public Key Algorithm (PKA) support and describes programming
considerations for using the ICSF PKA callable services, such as the PKA key
token structure and key management.

Part 2 focuses on CCA callable services and includes the following chapters:

v Chapter 4, “Managing DES Cryptographic Keys” describes the callable services
for generating and maintaining cryptographic keys, the random number generate
callable service (which generates 8-byte random numbers) and the Secure
Sockets Layer (SSL) security protocol. It also presents utilities to build DES
tokens and generate and translate control vectors and describes the PKA callable
services that support DES key distribution.

v Chapter 5, “Protecting Data” describes the callable services for deciphering
ciphertext from one key and enciphering it under another key. It also describes
enciphering and deciphering data with encrypted keys and encoding and
decoding data with clear keys.

© Copyright IBM Corp. 1997, 2002 xxi

v Chapter 6, “Verifying Data Integrity and Authenticating Messages” describes the
callable services for generating and verifying message authentication codes
(MACs), generating modification detection codes (MDCs), generating hashes
(SHA-1, MD5, RIPEMD-160), and generating and verifying VISA card verification
values.

v Chapter 7, “Financial Services” describes the callable services for generating,
verifying, and translating personal identification numbers (PINs). It also describes
the callable services that support the Secure Electronic Transaction (SET)
protocol.

v Chapter 8, “Using Digital Signatures” describes the PKA callable services that
support using digital signatures to authenticate messages.

v Chapter 9, “Managing PKA Cryptographic Keys” describes the PKA callable
services that generate and manage PKA keys.

v Chapter 10, “Utilities” describes callable services that convert data between
EBCDIC and ASCII format, convert between binary strings and character strings,
and edit text strings according to ANSI X9.9-4 editing rules.

v Chapter 11, “Trusted Key Entry Workstation Interfaces” describes the PCI
interface (PCI) and the Public Key Secure Cable (PKSC) interface that supports
Trusted Key Entry (TKE), an optional feature available with ICSF.

v Chapter 12, “Managing Keys According to the ANSI X9.17 Standard” describes
the callable services that support the ANSI X9.17 key management standard 1,
which defines a process for protecting and exchanging DES keys.

The appendixes include the following information:

v Appendix A, “ICSF and TSS Return and Reason Codes” explains the return and
reason codes returned by the callable services.

v Appendix B, “Key Token Formats” describes the formats for DES internal,
external, and null key tokens and for PKA public, private external, and private
internal key tokens containing either Rivest-Shamir-Adleman (RSA) or Digital
Signature Standard (DSS) information. This appendix also describes the PKA null
key token.

v Appendix C, “Control Vectors and Changing Control Vectors with the CVT
Callable Service” on page 383 contains a table of the default control vector
values that are associated with each key type and describes the control
information for testing control vectors, mask array preparation, selecting the
key-half processing mode, and an example of Control Vector Translate.

v Appendix D, “Coding Examples” provides examples for COBOL, assembler, and
PL/1.

v Appendix E, “Using ICSF with BSAFE” explains how to access ICSF services
from applications written using RSA’s BSAFE cryptographic toolkit.

v Appendix F, “Cryptographic Algorithms and Processes” on page 419 describes
the PIN formats and algorithms, cipher processing and segmenting rules, multiple
encipherment and decipherment and their equations, the PKA92 encryption
process, partial notarization of an ANSI key-encrypting key (AKEK), and the
algorithm for transforming a Commercial Data Masking Facility (CDMF) key.

v Appendix G, “EBCDIC and ASCII Default Conversion Tables” presents EBCDIC
to ASCII and ASCII to EBCDIC conversion tables.

v Appendix H, “Access Control Points and Callable Services” lists which access
control points correspond to which callable services.

v Notices contains notices, programming interface information, and trademarks.

1. ANSI X9.17-1985: Financial Institution Key Management (Wholesale)

xxii z/OS V1R3.0 ICSF Application Programmer’s Guide

Where To Find More Information
For information about the referenced ICSF books, see Figure 1 on page xxiv.

Other books referenced in this book are:

v IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface Reference, SC40-1675

v z/OS MVS Programming: Callable Services for HLL, SA22-7613

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU,
SA22-7611

v BSAFE User’s Manual

v BSAFE Library Reference Manual

Related Publications
v z/OS ICSF TKE Workstation User’s Guide 2000, SA22-7524

v IBM Transaction Security System: General Information Manual and Planning
Guide, GA34-2137

v IBM Transaction Security System: Concepts and Programming Guide: Volume I,
Access Controls and DES Cryptography, GC31-3937

v IBM Transaction Security System: Concepts and Programming Guide: Volume II,
Public-Key Cryptography, GC31-2889

v IBM Transaction Security System: Basic CCA Cryptographic Services,
SA34-2362

v IBM Distributed Key Management System, Installation and Customization Guide,
GG24-4406

About This Book xxiii

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Figure 1. The z/OS ICSF Library

xxiv z/OS V1R3.0 ICSF Application Programmer’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

About This Book xxv

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
book. If you have problems using this book, or if you have suggestions for
improving it, complete and mail the Reader’s Comment Form found at the back of
the book.

xxvi z/OS V1R3.0 ICSF Application Programmer’s Guide

Summary of changes

Summary of changes
for SA22-7522-02
z/OS Version 1 Release 3

This book contains information previously presented in z/OS ICSF Application
Programmer’s Guide, SA22-7522-01, which supports z/OS Version 1 Release 2.

New information

v Access Control Points

– UKPT - PIN Verify, PIN Translate

v Callable services - The following new callable services perform encryption using
the AES algorithm. AES encryption is only allowed if the CCC is enabled for triple
DES. Only clear key support is provided.

– Symmetric Key Decipher (CSNBSYD) - Deciphers data in an address space
or a data space using the cipher block chaining or electronic code book
modes.

– Symmetric Key Encipher (CSNBSYE) - Enciphers data in an address space or
a data space using the cipher block chaining or electronic code book modes.

v ICSF Setup

– ICSF setup for E-Delivery delivery has been added. A sample ICSF options
dataset, CSFPRM01, has been added to SYS1.SAMPLIB for the purpose of
setting master keys by means of batch processing.

– A sample CKDS allocation job (member CSFCKDS) has been added to
SYS1.SAMPLIB.

– A sample PKDS allocation job (member CSFPKDS) has been added to
SYS1.SAMPLIB.

– Samples for CSFSTART (ICSF Startup Procedures) has been added.

– Sample JCL (CSFSETMK) for E-Delivery default passphrase has been added.

v Support to enable RMF to provide performance measurements on selected ICSF
services and functions that use Direct Access Crypto (DAC) CCF instructions has
been added.

v An appendix with z/OS product accessibility information has been added.

Changed information

v Callable services

– Control Vector Generate (CSNBCVG) - rule_array enhanced to support the
UKPT keyword.

– Key Token Build (CSNBKTB) - rule_array enhanced to support the UKPT
keyword.

– Encrypted PIN Translate (CSNBPTR) - rule_array enhanced to support UKPT
keywords UKPTIPIN, UKPTOPIN, and UKPTBOTH.

– Encrypted PIN Verify (CSNBPVR) - rule_array enhanced to support UKPT
keyword UKPTIPIN.

– Symmetric Key Export (CSNDSYX) - a new rule_array keyword, PKCSOAEP,
has been added. This keyword specifies the method found in RSA PKCS
#1V2 OAEP.

© Copyright IBM Corp. 1997, 2002 xxvii

– Symmetric Key Generate (CSNDSYG) - a new rule_array keyword,
PKCSOAEP, has been added. This keyword specifies the method found in
RSA PKCS #1V2 OAEP.

– Symmetric Key Import (CSNDSYI) - a new rule_array keyword, PKCSOAEP,
has been added. This keyword specifies the method found in RSA PKCS
#1V2 OAEP.

v The ICSF TSO panels have been updated to enhance usability:

– Coprocessor management functions have been combined onto one panel

– Master key management/CKDS functions combined onto one panel

– TKE TSO utilities combined onto one panel

– Primary panel simplified

– New utility added to generate master key values from a pass phrase

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7522-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS ICSF Application
Programmer’s Guide, SA22-7522-00, which supports z/OS Version 1 Release 1.

New information

v Callable services

– PKA Key Token Change (CSNDKTC) callable service - This service changes
PKA internal key tokens (RSA and DSS) from encipherment with the old PCI
Cryptographic Coprocessor asymmetric-keys master key to encipherment with
the current PCI Cryptographic Coprocessor asymmetric-keys master key.

– Secure Messaging for Keys (CSNBSKY) callable service - This service
encrypts a text block, including a clear key value decrypted from an internal or
external DES token.

– Secure Messaging for PINs (CSNBSPN) callable service - This service
encrypts a text block, including a clear PIN block recovered from an encrypted
PIN block.

v Installation Options Data Set

– PKDSCACHE, an installation option, defines the size of the PKDS Cache in
records. The PKDS cache improves performance as it facilitates access to
frequently used records. Specify n as a decimal value from 0 to 256. If n is
zero, no cache will be implemented. If PKDSCACHE is not specified, the
default value is 64. PKDSCACHE can be implemented on OS/390 V2 R10
and z/OS V1 R1 by installing APAR OW48568.

– When specifying parameter values within parentheses, leading and trailing
blanks are ignored. Embedded blanks may cause unpredictable results.

xxviii z/OS V1R3.0 ICSF Application Programmer’s Guide

v PCI Cryptographic Accelerator (PCICA) support has been added. If a PCI
Cryptographic Accelerator is available, clear RSA key processing in the
CSFDPKD service will be routed to the PCI Cryptographic Accelerator. If you
have a PCI Cryptographic Accelerator online, toleration APAR OW49402 is
required on lower levels of ICSF (OS/390 V2 R9, OS/390 V2 R10 and z/OS V1
R1).

v Support to REENCIPHER PKDS and ACTIVATE PKDS has been added to the
Master Key Management Panels. The new utility, CSFPUTIL, can also be used to
reencipher the PKDS from the old asymmetric-keys master key to the current
master key and to activate the reenciphered PKDS. Toleration APAR OW49386 is
required on the following systems in order to activate the re-enciphered PKDS:

– HCRP210 (standalone), HCRP220(OS/390 V2 R6, OS/390 V2 R7, OS/390 V2
R8), HCRP230 (OS/390 V2 R9), and HCR7703 (OS/390 V2 R10 and z/OS V1
R1)

v UDX support - Support for writing your own UDX has been added.

Changed information

v Beginning in z/OS V1 R2, the DOMAIN parameter is an optional parameter in the
installation options data set. It is, however, required if more than one domain is
specified as the usage domain on the PR/SM panels or if running in native mode.
If specified in the options data set, it will be used and it must be one of the
usage domains for the LPAR. If DOMAIN is not specified in the options data set,
ICSF determines which domains are available in this LPAR. If only one domain is
defined for the LPAR, ICSF will use it. If more than one is available, ICSF will
issue error message ″CSFM409E MULTIPLE DOMAINS AVAILABLE. SELECT
ONE IN THE OPTIONS DATA SET.″

v Callable services

– MAXLEN parameter checking has been eliminated for the following services:

- Encipher (CSNBENC and CSNBENC1)

- Decipher (CSNBDEC and CSNBDEC1)

- MAC generate (CSNBMGN and CSNBMGN1)

- MAC verify (CSNBMVR and CSNBMVR1)

- Ciphertext translate (CSNBCTT and CSNBCTT1)

- MDC generate (CSNBMDG and CSNBMDG1)

The MAXLEN parameter is also no longer enforced in the CUSP compatibility
CIPHER service. The MAXLEN parameter may still be specified in the options
data set, but only the maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result and ICSF will not start.

v Pass Phrase Initialization now allows uninitialized PCI Cryptographic
Coprocessors to be initialized without processing all Cryptographic Coprocessors.
A new panel option (Initialize new PCICC Only) has been added to the Pass
Phrase Initialization panel to allow the initialization of the new PCI Cryptographic
Coprocessors.

Deleted information

v Message IEC161I has been eliminated during the first time startup of ICSF.

v The following reason codes for ICSF/MVS X'18F' are being eliminated and will be
replaced with operator messages.

– Reason Code X'3C' - replaced by message CSFM105E

– Reason Code X'48' - replaced by message CSFM120E

Summary of changes xxix

– Reason Code X'1B' - replaced by message CSFM410E

– Reason Code X'4B' - replaced by message CSFM107E

– Reason Code X'106' - If the CCC is all zeroes, abend X'18F' reason code 4A
will occur. If the CCC does not exist, message CSFM113E will be displayed.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xxx z/OS V1R3.0 ICSF Application Programmer’s Guide

Part 1. IBM CCA Programming

This part of the book introduces programming for the IBM CCA, DES cryptography
and PKA cryptography. It explains how to use DES and PKA callable services.

© Copyright IBM Corp. 1997, 2002 1

2 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 1. Introducing Programming for the IBM CCA

ICSF provides access to cryptographic functions through callable services, which
are also known as verbs. A callable service is a routine that receives control using a
CALL statement in an application language.

Before invoking callable services in an application program, you must link them into
the application program. See “Linking a Program with the ICSF Callable Services”
on page 11.

To invoke the callable service, the application program must include a procedure
call statement that has the entry point name and parameters for the callable
service. The parameters that are associated with a callable service provide the only
communication between the application program and ICSF.

Callable Service Syntax
This book uses a general call format to show the name of the ICSF callable service
and its parameters. An example of that format is shown below:
CALL CSNBxxxx(return_code,

reason_code,
exit_data_length,
exit_data,
parameter_5,
parameter_6,
.
.
.
parameter_N)

where CSNBxxxx is the name of the callable service. CSFXXX corresponds to
CSNBxxx. (The ANSI services start with CSNAxxx and have corresponding
CSFAxxx names. For the PKA services, which start with CSNDxxx and have
corresponding CSFxxx names, see “Summary of the PKA Callable Services” on
page 57.) The return code, reason code, exit data length, exit data, parameter 5
through parameter N represent the parameter list. The call generates a fixed length
parameter list. You must supply the parameters in the order shown in the syntax
diagrams. “Parameter Definitions” on page 6 describes the parameters in more
detail.

ICSF callable services can be called from application programs written in a number
of high-level languages as well as assembler. The high-level languages are:
v C
v COBOL
v FORTRAN
v PL/I

The ICSF callable services comply with the IBM Common Cryptographic
Architecture: Cryptographic Application Programming Interface. The services can be
invoked using the generic format, CSNBxxxx. Use the generic format if you want
your application to work with more than one cryptographic product. Otherwise, use
the CSFxxxx format.

Specific formats for the languages that can invoke ICSF callable services are as
follows:

C

© Copyright IBM Corp. 1997, 2002 3

CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)
COBOL
CALL ‘CSNBxxxx’ USING return_code,reason_code,exit_data_length,
exit_data,parameter_5,...parameter_N
FORTRAN
CALL CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)
PL/I
DCL CSNBxxxx ENTRY OPTIONS(ASM);
CALL CSNBxxxx return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N;
Assembler language programs must use standard linkage conventions when
invoking ICSF callable services. An example of how an assembler language
program can invoke a callable service is shown as follows:
CALL CSNBxxxx,(return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)

Coding examples using the high-level languages are shown in Appendix D, “Coding
Examples”.

Callable Services with ALET Parameters
Some callable services have an alternate entry point (with ALET parameters—for
data that resides in data spaces). They are in the format of CSNBxxx1:

Verb
Callable Service without
ALET

Callable Service with
ALET

Ciphertext translate CSNBCTT CSNBCTT1

Decipher CSNBDEC CSNBDEC1

Encipher CSNBENC CSNBENC1

MAC generate CSNBMGN CSNBMGN1

MAC verify CSNBMVR CSNBMVR1

MDC generate CSNBMDG CSNBMDG1

One way hash generate CSNBOWH CSNBOWH1

When choosing which service to use, consider the following:

v Callable services that do not have an ALET parameter require data to reside in
the caller’s primary address space. A program using these services adheres to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v Callable services that have an ALET parameter allow data to reside either in the
caller’s primary address space or in a data space. This can allow you to encipher
more data with one call. However, a program using these services does not
adhere to the IBM Common Cryptographic Architecture: Cryptographic
Application Programming Interface, and may need to be modified before it can
run with other cryptographic products that follow this programming interface.

Rules for Defining Parameters and Attributes
The following rules apply to the callable services:

v Parameters are required and positional.

v Each parameter list has a fixed number of parameters.

4 z/OS V1R3.0 ICSF Application Programmer’s Guide

v Each parameter is defined as an integer or a character string.

v Keywords passed to the callable services, such as TOKEN, CUSP, and FIRST
can be in lower, upper, or mixed case. The callable services fold them to
uppercase before using them.

Each callable service defines its own list of parameters. The entire list must be
supplied on every call. If you do not use a specific parameter, you must supply that
parameter with hexadecimal zeros or binary zeros.

Parameters are passed to the callable service. All information that is exchanged
between the application program and the callable service is through parameters
passed on the call.

Each parameter definition begins with the direction that the data flows and the
attributes that the parameter must possess (called “type”). The following describes
the direction.

Direction Meaning

Input The application sends (supplies) the parameter to the callable
service. The callable service does not change the value of the
parameter.

Output The callable service returns the parameter to the application
program. The callable service may have changed the value of the
parameter on return.

Input/Output The application sends (supplies) the parameter to the callable
service. The callable service may have changed the value of the
parameter on return.

The following describes the attributes or type.

Type Meaning

Integer (I) A 4-byte (32-bit), twos complement, binary number that has sign
significance.

String A series of bytes where the sequence of the bytes must be
maintained. Each byte can take on any bit configuration. The string
consists only of data bytes. No string terminators, field-length
values, or type-casting parameters are included. The maximum size
of a string is X'7FFFFFFF' or 2 gigabytes. In some of the callable
services, the length of some string data has an upper bound
defined by the installation.

Alphanumeric character string
A string of bytes in which each byte represents characters from the
following set:

EBCDIC EBCDIC EBCDIC
Character Value Character Value Character Value

A-Z (X'4D' / X'61'
a-z) X'5D' , X'6B'
0-9 + X'4E' % X'6C'
Blank X'40' & X'50' ? X'6F'
* X'5C' . X'4B' : X'7A'
< X'4C' ; X'5E' = X'7E'
> X'6E' - X'60' ’ X'7D'

Chapter 1. Introducing Programming for the IBM CCA 5

Parameter Definitions
This section describes the following parameters, which are used by most of the
callable services:
v Return_code
v Reason_code
v Exit_data_length
v Exit_data
v Key_identifier

Note: The return_code parameter, the reason_code parameter, the
exit_data_length parameter, and the exit_data parameter are used with every
callable service.

Return and Reason Codes
Return_code and reason_code parameters return integer values upon completion of
the call.

Return_code
The return code parameter contains the general results of processing as an
integer.

Table 1 shows the standard return code values that the callable services return.
A complete list of return codes is shown in Appendix A, “ICSF and TSS Return
and Reason Codes”.

Table 1. Standard Return Code Values From ICSF Callable Services

Value Hex (Decimal) Meaning

00 (00) Successful. Normal return.

04 (04) A warning. Execution was completed with a minor, unusual
event encountered.

08 (08) An application error occurred. The callable service was
stopped due to an error in the parameters. Or, another
condition was encountered that needs to be investigated.

0C (12) Error. ICSF is not active or an environment error was
detected.

10 (16) System error. The callable service was stopped due to a
processing error within the software or hardware.

Generally, CUSP and PCF macros will receive identical error return codes if
they execute on CUSP/PCF or on ICSF. A single exception has been noted: if a
key is installed on the ICSF CKDS with the correct label but with the wrong key
type, CUSP/PCF issues a return code of 8, indicating that the key type was
incorrect. ICSF issues a return code of 12, indicating that the key could not be
found.

Reason_code
The reason code parameter contains the results of processing as an integer.
You can specify which set of reason codes (ICSF or TSS) are returned from
callable services. The default value is ICSF. For more information about the
REASONCODES installation option, see z/OS ICSF System Programmer’s
Guide. Different results are assigned to unique reason code values under a
return code.

A list of reason codes is shown in Appendix A, “ICSF and TSS Return and
Reason Codes”.

6 z/OS V1R3.0 ICSF Application Programmer’s Guide

Exit Data Length and Exit Data
The following describes the exit_data_length and exit_data parameters. The
parameters are input to all callable services. (Although all services require these
parameters, several services ignore them. Installation exits are not enabled for the
following callable services: code conversion, character/nibble conversion, X9.9 data
editing, and some PKA callable services.

ICSF provides two installation exits for each callable service. The preprocessing exit
is invoked when an application program calls a callable service, but before the
callable service starts processing. For example, this exit is used to check or change
parameters passed on the call or to stop the call. It can also be used to perform
additional security checks.

The post-processing exit is invoked when the callable service has completed
processing, but before the callable service returns control to the application
program. For example, this exit can be used to check and change return codes
from the callable service or perform clean-up processing.

For more information about the exits, see z/OS ICSF System Programmer’s Guide.

Exit_data_length
The integer that has the string length of the data passed to the exit. The data is
identified in the following exit_data parameter.

Exit_data
The installation exit data string that is passed to the callable service’s
preprocessing exit. The installation exit can use the data for its own processing.

Key Identifier for Key Token
A key identifier for a key token is an area that contains one of the following:

v Key label identifies keys that are in the CKDS or PKDS. Ask your ICSF
administrator for the key labels that you can use.

v Key token can be either an internal key token, an external key token, or a null
key token. Key tokens are generated by an application (for example, using the
key generate callable service), or received from another system that can produce
external key tokens.

An internal key token can be used only on ICSF because the master key
encrypts the key value. Internal key tokens contain keys in operational form only.

An external key token can be exchanged with other systems because a
transport key that is shared with the other system encrypts the key value.
External key tokens contain keys in either exportable or importable form.

A null key token can be used to import a key from a system that cannot
produce external key tokens. A null key token contains a key encrypted under an
importer key-encrypting key but does not contain the other information present in
an external key token.

The term key identifier is used when a parameter could be one of the above items
and to indicate that different inputs are possible. For example, you may want to
specify a specific parameter as either an internal key token or a key label. The key
label is, in effect, an indirect reference to a stored internal key token.

Key Label: If the first byte of the key identifier is greater than X'40', the field is
considered to be holding a key label. The contents of a key label are interpreted as
a pointer to a CKDS or PKDS key entry. The key label is an indirect reference to an
internal key token.

Chapter 1. Introducing Programming for the IBM CCA 7

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the key record create callable service which enforces
the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has the following form:

Offset Length Data
00-63 64 Key label name

Invocation Requirements
Applications that use ICSF callable services must meet the following invocation
requirements:
v Data can be located above or below 16Mb but must be 31-bit addressable
v Problem or supervisor state
v Any PSW key
v Task mode or Service Request Block (SRB) mode
v No mode restrictions
v Enabled for interrupts

Note: The dynamic CKDS update services have two additional restrictions.
v The caller must be in task mode, not SRB mode.
v The caller must not be in cross-memory mode.

Security Considerations
Your installation can use the Security Server (RACF) or an equivalent product to
control who can use ICSF callable services or key labels. Before using an ICSF
callable service or a key label, ask your security administrator to ensure that you
have the necessary authorization.

Performance Considerations
In most cases, the z/OS operating system Dispatcher provides optimum
performance. However, if your application makes extensive use of ICSF functions,
you should consider using one or both of the following:

v If your application runs in SRB mode, you should consider scheduling an SRB to
run on a processor with cryptographic feature installed (using the
FEATURE=CRYPTO keyword on the SCHEDULE macro). For more information
on the SCHEDULE macro, refer to z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU.

v Use the IEAAFFN callable service (processor affinity) to avoid system overhead
in selecting which processor your program (specifically, a particular TCB in the
application) runs in. Note that you do not have to use the IEAAFFN service to
ensure that the system runs a program on a processor with a cryptographic
feature; the system ensures that automatically. However, you can avoid some of
the system overhead involved in the selection process by using the IEAAFFN
service, thus improving the program’s performance. For more information on
using the IEAAFFN callable service, refer to z/OS MVS Programming: Callable
Services for HLL.

8 z/OS V1R3.0 ICSF Application Programmer’s Guide

IBM recommends that you run applications first without using these options.
Consider these options when you are tuning your application for performance. Use
these options only if they improve the performance of your application.

Special Secure Mode
Special secure mode is a special processing mode in which:

v The secure key import and multiple secure key import callable services, which
works with clear keys, can be used.

v The Clear PIN Generate and Clear PIN Generate Alternate callable services,
which works with clear PINs, can be used.

v The Symmetric Key Generate callable service with the ″IM″ keyword (the DES
enciphered key is enciphered by an IMPORTER key) can be used.

v The key generator utility program (KGUP) can be used to enter clear keys into
the CKDS.

To use special secure mode, several conditions must be met.

v The installation options data set must specify YES for the SSM installation
option.

For information about specifying installation options, see z/OS ICSF System
Programmer’s Guide.

v The environmental control mask (ECM) must be configured to permit special
secure mode.

The ECM is a 32-bit mask defined for each cryptographic domain during
hardware installation. The second bit in this mask must have been turned on to
enable special secure mode. The default is to have this bit turned on in the ECM.
The bit can only be turned off/on through the optional TKE Workstation.

v If you are running in LPAR mode, special secure mode must be enabled.

On S/390 Enterprise Servers, the S/390 Multiprise, and the IBM Eserver
zSeries, you enable special secure mode during activation using the Crypto page
of the Customize Activation Profiles task. After activation, you can enable or
disable special secure mode on the Change LPAR Crypto task. Both of these
tasks can be accessed from the Hardware Master Console.

For S/390 Enterprise Servers, the OS/390 Multiprise, and the Eserver zSeries with
TKE, TKE can disable/enable special secure mode. For more information about
entering clear keys, see z/OS ICSF Administrator’s Guide.

Using the Callable Services
This section discusses how ICSF callable services use the different key types and
key forms. It also provides suggestions on what to do if there is a problem.

ICSF provides callable services that perform cryptographic functions. You call and
pass parameters to a callable service from an application program. Besides the
callable services ICSF provides, you can write your own callable services called
installation-defined callable services. Note that only an experienced system
programmer should attempt to write an installation-defined callable service.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the installation
options data set.

Chapter 1. Introducing Programming for the IBM CCA 9

You must also write a service stub. To execute an installation-defined callable
service, you call a service stub from your application program. In the service stub,
you specify the service number that identifies the callable service.

For more information about installation-defined callable services, see z/OS ICSF
System Programmer’s Guide.

When the Call Succeeds
If the return code is 0, ICSF has successfully completed the call. If a reason code
other than 0 is included, refer to Appendix A, “ICSF and TSS Return and Reason
Codes” on page 335, for additional information. For instance, reason code 10000
indicates the key in the key identifier (or more than one key identifier, for services
that use two internal key identifiers) has been reenciphered from encipherment
under the old master key to encipherment under the current master key. Keys in
external tokens are not affected by this processing because they contain keys
enciphered under keys other than the host master key. If you manage your key
identifiers on disk, then reason code 10000 should be a “trigger” to store these
updated key identifiers back on disk.

Your program can now continue providing its function, but you may want to
communicate the key that you used to another enterprise. This process is exporting
a key.

If you want to communicate the key that you are using to a cryptographic partner,
there are several methods to use:

v For DATA keys only, call the data key export callable service. You now have a
DATA key type in exportable form.

v Call the key export callable service. You now have the key type in exportable
form.

v When you use the key generate callable service to create your operational or
importable key form, you can create an exportable form, at the same time, and
you now have the key type, in exportable form, at the same time as you get the
operational or importable form.

When the Call Does Not Succeed
Now you have planned your use of the ICSF callable services, made the call, but
the service has completed with a return and reason codes other than zero.

If the return code is 4, there was a minor problem. For example, reason code 8004
indicates the trial MAC that was supplied does not match the message text
provided.

If the return code is 8, there was a problem with one of your parameters. Check the
meaning of the reason code value, correct the parameter, and call the service
again. You may go through this process several times before you succeed.

If the return code is 12, ICSF is not active, or has no access to cryptographic units,
or has an environmental problem. Check with your ICSF administrator.

If the return code is 16, the service has a serious problem that needs the help of
your system programmer.

There are several reason codes that can occur after you have fully debugged and
tested your program. For example:

10 z/OS V1R3.0 ICSF Application Programmer’s Guide

v Reason code 10004 indicates that you provided a key identifier that holds a key
enciphered under a host master key. The host master key is not installed in the
cryptographic unit. If this happens, you have to go back and import your
importable key form again and call the service again. You need to build this flow
into your program logic.

v Reason code 10012 indicates a key corresponding to the label that you specified
is not in the CKDS or PKDS. Check with your ICSF administrator to see if the
label is correct.

Return and reason codes are described in Appendix A, “ICSF and TSS Return and
Reason Codes” on page 335.

Linking a Program with the ICSF Callable Services
To link the ICSF callable services into an application program, you can use the
following sample JCL statements.In the SYSLIB concatenation, include the
CSF.SCSFMOD0 module in the link edit step.
//LKEDENC JOB
//*---*
//* *
//* The JCL links the ICSF encipher callable service, CSNBENC, *
//* into an application called ENCIPHER. *
//* *
//*---*
//LINK EXEC PGM=IEWL,
// PARM=’XREF,LIST,LET’
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CSF.SCSFMOD0,DISP=SHR * SERVICES ARE IN HERE
//SYSLMOD DD DSN=MYAPPL.LOAD,DISP=SHR * MY APPLICATION LIBRARY
//SYSLIN DD DSN=MYAPPL.ENCIPHER.OBJ,DISP=SHR * MY ENCIPHER PROGRAM
// DD *

ENTRY ENCIPHER
NAME ENCIPHER(R)

/*

Chapter 1. Introducing Programming for the IBM CCA 11

12 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 2. Introducing DES Cryptography and Using DES
Callable Services

The Integrated Cryptographic Service Facility protects data from unauthorized
disclosure or modification. ICSF protects data stored within a system, stored in a
file off a system on magnetic tape, and sent between systems. ICSF also
authenticates the identity of customers in the financial industry and authenticates
messages from originator to receiver. It uses cryptography to accomplish these
functions.

ICSF provides access to cryptographic functions through callable services. A
callable service is a routine that receives control using a CALL statement in an
application language. Each callable service performs one or more cryptographic
functions, including:

v Generating and managing cryptographic keys

v Enciphering and deciphering data with encrypted keys using either the U.S.
National Institute of Standards and Technology (NIST) Data Encryption Standard
(DES), or the Commercial Data Masking Facility (CDMF)

v Transforming a CDMF DATA key to a transformed shortened DES key

v Reenciphering text from encryption under one key to encryption under another
key

v Encoding and decoding data with clear keys

v Generating random numbers

v Ensuring data integrity and verifying message authentication

v Generating, verifying, and translating personal identification numbers (PINs) that
identify a customer on a financial system

This chapter provides an overview of the DES cryptographic functions provided in
ICSF, explains the functions of the cryptographic keys, and introduces the topic of
building key tokens.

Functions of the DES Cryptographic Keys
ICSF provides functions to create, import, and export DES keys. This section gives
an overview of these cryptographic keys. Detailed information about how ICSF
organizes and protects keys is in z/OS ICSF Administrator’s Guide.

Key Separation
The cryptographic feature controls the use of keys by separating them into unique
types, allowing you to use a specific type of key only for its intended purpose. For
example, a key used to protect data cannot be used to protect a key.

An ICSF system has only one DES master key. However, to provide for key
separation, the cryptographic feature automatically encrypts each type of key under
a unique variation of the master key. Each variation of the master key encrypts a
different type of key. Although you enter only one master key, you have a unique
master key to encrypt all other keys of a certain type.

Note: In CUSP/PCF, key separation applies only to keys enciphered under the
master key (keys in operational form). In ICSF, key separation also applies to
keys enciphered under transport keys (keys in importable or exportable

© Copyright IBM Corp. 1997, 2002 13

form). This allows the creator of a key to transmit the key to another system
and to enforce its use at the other system.

Master Key Variant
Whenever the master key is used to encipher a key, the cryptographic coprocessor
produces a variation of the master key according to the type of key the master key
will encipher. These variations are called master key variants. The cryptographic
coprocessor creates a master key variant by exclusive ORing a fixed pattern, called
a control vector, onto the master key. A unique control vector is associated with
each type of key. For example, all the different types of data-encrypting, PIN, MAC,
and transport keys are each exclusive ORed with a unique control vector. The
different key types are described in “Types of Keys” on page 17.

Each master key variant protects a different type of key. It is similar to having a
unique master key protect all the keys of a certain type.

The master key, in the form of master key variants, protects keys operating on the
system. A key can be used in a cryptographic function only when it is enciphered
under a master key. When systems want to share keys, transport keys are used to
protect keys sent outside of systems. When a key is enciphered under a transport
key, the key cannot be used in a cryptographic function. It must first be brought on
to a system and enciphered under the system’s master key, or exported to another
system where it will then be enciphered under that system’s master key.

Transport Key Variant
Like the master key, ICSF creates variations of a transport key to encrypt a key
according to its type. This allows for key separation when a key is transported off
the system. A transport key variant, also called key-encrypting key variant, is
created the same way a master key variant is created. The transport key’s clear
value is exclusive ORed with a control vector associated with the key type of the
key it protects.

Note: To exchange keys with systems that do not recognize transport key variants,
ICSF allows you to encrypt selected keys under a transport key itself, not
under the transport key variant.

Key Forms
A key that is protected under the master key is in operational form, which means
ICSF can use it in cryptographic functions on the system.

When you store a key with a file or send it to another system, the key is enciphered
under a transport key rather than the master key because, for security reasons, the
key should no longer be active on the system. When ICSF enciphers a key under a
transport key, the key is not in operational form and cannot be used to perform
cryptographic functions.

When a key is enciphered under a transport key, the sending system considers the
key in exportable form. The receiving system considers the key in importable form.
When a key is reenciphered from under a transport key to under a system’s master
key, it is in operational form again.

Enciphered keys appear in three forms. The form you need depends on how and
when you use a key.

14 z/OS V1R3.0 ICSF Application Programmer’s Guide

v Operational key form is used at the local system. Many callable services can
use an operational key form.

The key token build, key generate, key import, data key import, clear key import,
multiple clear key import, secure key import, and multiple secure key import
callable services can create an operational key form.

v Exportable key form is transported to another cryptographic system. It can only
be passed to another system. The ICSF callable services cannot use it for
cryptographic functions. The key generate, data key export, and key export
callable services produce the exportable key form.

v Importable key form can be transformed into operational form on the local
system. The key import callable service (CSNBKIM) and the Data Key Import
callable service (CSNBDKM) can use an importable key form. Only the key
generate callable service (CSNBKGN) can create an importable key form. The
secure key import (CSNBSKI) and multiple secure key import (CSNBSKM)
callable services can convert a clear key into an importable key form.

For more information about the key types, see either “Functions of the DES
Cryptographic Keys” on page 13 or the z/OS ICSF Administrator’s Guide. See “Key
Forms and Types Used in the Key Generate Callable Service” on page 35 for more
information about key form.

DES Key Flow
The conversion from one key to another key is considered to be a one-way flow. An
operational key form cannot be turned back into an importable key form. An
exportable key form cannot be turned back into an operational or importable key
form. The flow of ICSF key forms can only be in one direction:
IMPORTABLE —to→ OPERATIONAL —to→ EXPORTABLE

Key Token
A key token is a 64-byte field composed of a key value and control information. The
control information is assigned to the key when ICSF creates the key. The key
token can be either an internal key token, an external key token, or a null key
token. Through the use of key tokens, ICSF can do the following:
v Support continuous operation across a master key change
v Control use of keys in cryptographic services

If the first byte of the key identifier is X'01', the key identifier is interpreted as an
internal key token. An internal key token is a token that can be used only on the
ICSF system that created it (or another ICSF system with the same host master
key). It contains a key that is encrypted under the master key.

An application obtains an internal key token by using one of the callable services
such as those listed below. The callable services are described in detail in
Chapter 4, “Managing DES Cryptographic Keys”.
v Key generate
v Key import
v Secure key import
v Multiple secure key import
v Clear key import
v Multiple clear key import
v Key record read
v Key token build
v Data Key Import

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 15

The master key may be dynamically changed between the time that you invoke a
service, such as the key import callable service to obtain a key token, and the time
that you pass the key token to the encipher callable service. When a change to the
master key occurs, ICSF reenciphers the caller’s key from under the old master key
to under the new master key. A Return Code of 0 with a reason code of 10000
notifies you that ICSF reenciphered the key. For information on reenciphering the
CKDS or the PKDS, see z/OS ICSF Administrator’s Guide.

Attention: If an internal key token held in user storage is not used while the
master key is changed twice, the internal key token is no longer usable. (See
“Other Considerations” on page 18 for additional information.)

For debugging information, see Appendix B, “Key Token Formats” for the format of
an internal key token.

If the first byte of the key identifier is X'02', the key identifier is interpreted as an
external key token. By using the external key token, you can exchange keys
between systems. It contains a key that is encrypted under a key-encrypting key.

An external key token contains an encrypted key and control information to allow
compatible cryptographic systems to:
v Have a standard method of exchanging keys
v Control the use of keys through the control vector
v Merge the key with other information needed to use the key

An application obtains the external key token by using one of the callable services
such as those listed below. They are described in detail in Chapter 4, “Managing
DES Cryptographic Keys”.
v Key generate
v Key export
v Data key export

For debugging information, see Appendix B, “Key Token Formats” for the format of
an external key token.

If the first byte of the key identifier is X'00', the key identifier is interpreted as a null
key token. Use the null key token to import a key from a system that cannot
produce external key tokens. That is, if you have an 8- to 16-byte key that has been
encrypted under an importer key, but is not imbedded within a token, place the
encrypted key in a null key token and then invoke the key import callable service to
get the key in operational form.

For debugging information, see Appendix B, “Key Token Formats” for the format of
a null key token.

Control Vector
A unique control vector exists for each type of key the master key enciphers. The
cryptographic feature exclusive ORs the master key with the control vector
associated with the type of key the master key will encipher. The control vector
ensures that an operational key is only used in cryptographic functions for which it
is intended. For example, the control vector for an input PIN-encrypting key ensures
that such a key can be used only in the Encrypted PIN translate and Encrypted PIN
verify functions.

16 z/OS V1R3.0 ICSF Application Programmer’s Guide

Types of Keys
The cryptographic keys are grouped into the following categories based on the
functions they perform.

v DES master key. The DES master key is a double-length (128 bits) key used
only to encrypt other keys. The ICSF administrator installs and changes the DES
master key (see z/OS ICSF Administrator’s Guide for details). On S/390
Enterprise Servers and S/390 Multiprise and the IBM Eserver zSeries, the
administrator does this by using the Clear Master Key Entry panels or the
optional Trusted Key Entry (TKE) workstation.

The master key always remains in a secure area in the cryptographic facility.

It is used only to encipher and decipher keys. Other keys also encipher and
decipher keys and are mostly used to protect cryptographic keys you transmit on
external links. These keys, while on the system, are also encrypted under the
master key.

v SYM-MK master key. The SYM-MK master key is a double-length (128-bit) key
that is used only to encrypt other DES keys on the PCI Cryptographic
Coprocessor. The ICSF administrator installs and changes the SYM-MK master
key using either the ICSF panels or the optional Trusted Key Entry (TKE)
workstation. The master key always remains within the secure boundary of the
PCI Cryptographic Coprocessor. As with the DES master key, the SYM-MK
master key is used only to encipher and decipher keys that are in operational
form.

v Data-encrypting keys. The data-encrypting keys are single-length (64-bit),
double-length (128-bit), or triple-length (192-bit) keys that protect data privacy.
Single-length data-encrypting keys can also be used to encode and decode data
and authenticate data sent in messages. If you intend to use a data-encrypting
key for an extended period, you can store it in the CKDS so that it will be
reenciphered if the master key is changed.

You can use single-length data-encrypting keys in the encipher, decipher,
encode, and decode callable services to manage data and also in the MAC
generation and MAC verification callable services. Double-length and triple-length
data-encrypting keys can be used in the encipher and decipher callable services
for more secure data privacy.

Single-length data-encrypting keys can be exported and imported using the ANSI
X9.17 key management callable services.

v Data-translation keys. The data-translation keys are single-length (64 bits) keys
used for the ciphertext translate callable service as either the input or the output
data-transport key.

v MAC keys. The MAC keys are single-length (64 bits) and double-length (128
bits) keys used for the MAC generation and MAC verification callable services.

v PIN keys. The personal identification number (PIN) is a basis for verifying the
identity of a customer across financial industry networks. PIN keys are used in
cryptographic functions to generate, translate, and verify PINs, and protect PIN
blocks. They are all double-length (128 bits) keys. PIN keys are used in the Clear
PIN generate, Encrypted PIN verify, and Encrypted PIN translate callable
services.

For installations that do not support double-length 128-bit keys, effective
single-length keys are provided. For a single-length key, the left key half of the
key equals the right key half.

“Managing Personal Authentication” on page 31 gives an overview of the PIN
algorithms you need to know to write your own application programs.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 17

v Transport keys (or key-encrypting keys). Transport keys are also known as
key-encrypting keys. They are double-length (128 bits) keys used to protect keys
when you distribute them from one system to another.

There are four types of transport keys:

– Exporter or OKEYXLAT key-encrypting key protects keys of any type that are
sent from your system to another system. The exporter key at the originator is
the same key as the importer key of the receiver.

– Importer or IKEYXLAT key-encrypting key protects keys of any type that are
sent from another system to your system. It also protects keys that you store
externally in a file that you can import to your system later. The importer key
at the receiver is the same key as the exporter key at the originator.

Note: Transport keys replace local, remote, and cross keys used by CUSP/PCF.

You use key-encrypting keys to protect keys that are transported using any of the
following services: data key export, key export, key import, clear key import,
multiple clear key import, secure key import, multiple secure key import, key
generate, and key translate.

For installations that do not support double-length key-encrypting keys, effective
single-length keys are provided. For an effective single-length key, the clear key
value of the left key half equals the clear key value of the right key half.

v ANSI X9.17 key-encrypting keys. These bidirectional key-encrypting keys are
used exclusively in ANSI X9.17 key management. They are either single-length
(64 bits) or double-length (128 bits) keys used to protect keys when you
distribute them from one system to another according to the ANSI X9.17 protocol.

v Key-Generating Keys. Key-generating keys are double-length keys used to
derive unique-key-per-transaction keys.

Other Considerations
The following are considerations for keys held in the cryptographic key data set
(CKDS) or by applications.

v ICSF ensures that keys held in the CKDS are reenciphered during the master
key change. Keys with a long life span (more than one master key change)
should be stored in the CKDS.

v Keys enciphered under the host DES master key and held by applications are
automatically reenciphered under a new master key as they are used. Keys with
a short life span (for example, VTAM SLE data keys) do not need to be stored in
the CKDS. However, if you have keys with a long life span and you do not store
them in the CKDS, they should be enciphered under the importer key-encrypting
key. The importer key-encrypting key itself should be stored in the CKDS.

Table 2 describes the key types. You can build, generate, import, or export key
types DECIPHER, ENCIPHER, CIPHER, CVARDEC, and CVARPINE, but they will
not be usable by ICSF in other services since they are not supported by the
Cryptographic Coprocessor Feature.

Table 2. Descriptions of Key Types

Key Type Meaning

AKEK Single-length or double-length, bidirectional key-encrypting key
used for the ANSI X9.17 key management callable services.

18 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 2. Descriptions of Key Types (continued)

Key Type Meaning

CIPHER Used only to encrypt or decrypt data. Possible key lengths are
single-length or double-length. CIPHER keys cannot be used in
the Encipher (CSNBENC) or Decipher (CSNBDEC) callable
services.

CVARDEC The TSS Cryptographic variable decipher verb uses a
CVARDEC key to decrypt plaintext by using the Cipher Block
Chaining (CBC) method. Possible key lengths are single-length
or double-length.

CVARENC Cryptographic variable encipher service uses a CVARENC key
to encrypt plaintext by using the Cipher Block Chaining (CBC)
method. Possible key lengths are single-length or
double-length.

CVARPINE Used to encrypt a PIN value for decryption in a PIN-printing
application. Possible key lengths are single-length or
double-length.

CVARXCVL Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

CVARXCVR Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

DATA Data encrypting key. Use this single-length, double-length, or
triple-length key to encipher and decipher data.

DATAC Used to specify a DATA-class key that will perform in the
Encipher and Decipher callable services, but not in the MAC
Generate or MAC Verify callable services. This is a
double-length key.

DATAM MAC generation key. May be specified explicitly as a key type
or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a key type
or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to reencipher
text from one DATA key to another.

DECIPHER Used only to decrypt data. Possible key lengths are
single-length or double-length. DECIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher (CSNBDEC)
callable services.

DKYGENKY Used to generate a diversified key based on the
key-generating key. This is a double-length key.

ENCIPHER Used only to encrypt data. Possible key lengths are
single-length or double-length. ENCIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher (CSNBDEC)
callable services.

EXPORTER Exporter key-encrypting key. Use this double-length key
(including a DATA key) from the operational form into
exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable
service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length key to
convert a key from importable form into operational form.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 19

Table 2. Descriptions of Key Types (continued)

Key Type Meaning

IMP-PKA Double-length limited-authority importer key used to encrypt
PKA private key values in PKA external tokens.

IPINENC Double-length input PIN-encrypting key. PIN blocks received
from other nodes or automatic teller machine (ATM) terminals
are encrypted under this type of key. These encrypted PIN
blocks are the input to the Encrypted PIN translate, Encrypted
PIN verify, and Clear PIN Generate Alternate services. If an
encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an IPINENC
key.

KEYGENKY Used to generate a key based on the key-generating key. This
is a double-length key.

MAC MAC generation key. Use this single-length key to generate a
message authentication code.

MACVER MAC verification key. Use this single-length key to verify a
message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate callable
service. This is a double-length key.

OPINENC Output PIN-encrypting key. Use this double-length output key
to translate PINs. The output PIN blocks from the Encrypted
PIN translate, Encrypted PIN generate, and Clear PIN generate
alternate callable services are encrypted under this type of key.
If an encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an
OPINENC key.

PINGEN PIN generation key. Use this double-length key to generate
PINs.

PINVER PIN verification key. Use this double-length key to verify PINs.

SECMSG Used to encrypt PINs or keys in a secure message. This is a
double-length key.

Clear Keys
A clear key is the base value of a key, and is not encrypted under another key.
Encrypted keys are keys whose base value has been encrypted under another key.

There are four callable services you can use to convert a clear key to an encrypted
key:

v To convert a clear key to an encrypted data key in operational form, use either
the clear key import callable service or the multiple clear key import callable
service.

v To convert a clear key to an encrypted key of any type, in operational or
importable form, use either the secure key import callable service or the multiple
secure key import callable service.

Note: The secure key import and multiple secure key import callable services can
only execute in special secure mode.

20 z/OS V1R3.0 ICSF Application Programmer’s Guide

Generating and Managing DES Keys
Using ICSF, you can generate keys using either the key generator utility program or
the key generate callable service. The dynamic CKDS update callable services
allow applications to directly manipulate the CKDS. ICSF provides callable services
that support DES key management as defined by the IBM Common Cryptographic
Architecture (CCA) and by the ANSI X9.17 standard. CDMF also supports such
DES key management.

The next few sections describe the key generating and management options ICSF
provides.

Key Generator Utility Program
The key generator utility program generates data, data-translation, MAC, PIN, and
key-encrypting keys, and enciphers each type of key under a specific master key
variant. After the KGUP generates a key, it stores it in the cryptographic key data
set (CKDS).

Note: If you specify CLEAR, KGUP uses the random number generate and secure
key import callable services rather than the key generate service.

You can access KGUP using ICSF panels. The KGUP path of these panels helps
you create the JCL control statements to control the key generator utility program.
When you want to generate a key, you can enter the ADD control statement and
information, such as the key type on the panels. For a detailed description of the
key generator utility program and how to use it to generate keys, see z/OS ICSF
Administrator’s Guide.

Common Cryptographic Architecture DES Key Management Services
ICSF provides callable services that support CCA key management for DES keys.

Clear Key Import Callable Service
This service imports a clear DATA key that is used to encipher or decipher data. It
accepts a clear key and enciphers the key under the host master key, returning an
encrypted DATA key in operational form in an internal key token.

Control Vector Generate Callable Service
The control vector generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

Control Vector Translate Callable Service
The control vector translate callable service changes the control vector used to
encipher an external key. Use of this service requires the optional PCI
Cryptographic Coprocessor.

Cryptographic Variable Encipher Callable Service
The cryptographic variable encipher callable service uses a CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use
this service to prepare a mask array for the control vector translate service. The
plaintext must be a multiple of eight bytes in length. Use of this service requires the
optional PCI Cryptographic Coprocessor.

Data Key Export Callable Service
This service reenciphers a DATA key from encryption under the master key to
encryption under an exporter key-encrypting key, making it suitable for export to
another system.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 21

Data Key Import Callable Service
This service imports an encrypted source DES single-length or double-length DATA
key and creates or updates a target internal key token with the master key
enciphered source key. Use of this service requires the optional PCI Cryptographic
Coprocessor.

Diversified Key Generate Callable Service
The diversified key generate service generates a key based on the key-generating
key, the processing method, and the parameter supplied. The control vector of the
key-generating key also determines the type of target key that can be generated.
Use of this service requires the PCI Cryptographic Coprocessor.

Key Export Callable Service
This service reenciphers any type of key (except an AKEK or IMP-PKA key) from
encryption under a master key variant to encryption under the same variant of an
exporter key-encrypting key, making it suitable for export to another system.

Key Generate Callable Service
The key generate callable service generates data, data-translation, MAC, PIN, and
key-encrypting keys. It generates a single key or a pair of keys. Unlike the key
generator utility program, the key generate service does not store the keys in the
CKDS where they can be saved and maintained. The key generate callable service
returns the key to the application program that called it. The application program
can then use a dynamic CKDS update service to store the key in the CKDS.

When you call the key generate callable service, include parameters specifying
information about the key you want generated. Because the form of the key restricts
its use, you need to choose the form you want the generated key to have. You can
use the key_form parameter to specify the form. The possible forms are:

v Operational, if the key is used for cryptographic operations on the local system.
Operational keys are protected by master key variants and can be stored in the
CKDS or held by applications in internal key tokens.

v Importable, if the key is stored with a file or sent to another system. Importable
keys are protected by importer key-encrypting keys.

v Exportable, if the key is transported or exported to another system and imported
there for use. Exportable keys are protected by exporter key-encrypting keys and
cannot be used by ICSF callable service.

Importable and exportable keys are contained in external key tokens. For more
information on key tokens, refer to “Key Token” on page 15.

Key Import Callable Service
This service reenciphers a key (except an AKEK) from encryption under an importer
key-encrypting key to encryption under the master key. The reenciphered key is in
the operational form.

Key Part Import Callable Service
This service combines clear key of any key type and returns the combined key
value either in an internal token or as an update to the CKDS. The PCI
Cryptographic Coprocessor is required for all keys types except AKEK.

Key Test Callable Service
This service generates or verifies a secure cryptographic verification pattern for
keys. A parameter indicates the action you want to perform.

The key to test can be in the clear or encrypted under a master key. The key test
extended callable service works on keys encrypted under a KEK.

22 z/OS V1R3.0 ICSF Application Programmer’s Guide

For generating a verification pattern, the service creates and returns a random
number with the verification pattern. For verifying a pattern, you supply the random
number from the call to the service that generated the pattern.

Key Token Build Callable Service
The key token build callable service is a utility you can use to create skeleton key
tokens for AKEKs as input to the key generate or key part import callable service.
You can also use this service to build CCA key tokens for all key types ICSF
supports or to update the data encryption standard bits in a supplied DATA,
IMPORTER, or EXPORTER token.

Key Translate Callable Service
This service uses one key-encrypting key to decipher an input key and then
enciphers this key using another key-encrypting key within the secure environment.
Use of this service requires the optional PCI Cryptographic Coprocessor.

Multiple Clear Key Import Callable Service
This service imports a single-length, double-length, or triple-length clear DATA key
that is used to encipher or decipher data. It accepts a clear key and enciphers the
key under the host master key, returning an encrypted DATA key in operational form
in an internal key token.

Multiple Secure Key Import Callable Service
This service enciphers a single-length, double-length, or triple-length clear key
under the host master key or under an importer key-encrypting key. The clear key
can then be imported as any of the possible key types. Triple-length keys can only
be imported as DATA keys. This service can be used only when ICSF is in special
secure mode and does not allow the import of an AKEK.

Prohibit Export Callable Service
This service modifies an operational key so that it cannot be exported. This callable
service does not support NOCV key-encrypting keys, DATA, MAC, or MACVER
keys with standard control vectors (for example, control vectors supported by the
Cryptographic Coprocessor Feature). Use of this service requires the optional PCI
Cryptographic Coprocessor.

Prohibit Export Extended Callable Service
This service updates the control vector in the external token of a key in exportable
form so that the receiver node can import the key but not export it. When the key
import callable service imports such a token, it marks the token as non-exportable.
The key export callable service does not allow export of this token.

Random Number Generate Callable Service
The random number generate callable service creates a random number value to
use in generating a key. The callable service uses cryptographic hardware to
generate a random number for use in encryption.

Secure Key Import Callable Service
This service enciphers a clear key under the host master key or under an importer
key-encrypting key. The clear key can then be imported as any of the possible key
types. This service can be used only when ICSF is in special secure mode and
does not allow the import of an AKEK.

Note: The PKA encrypt, PKA decrypt, symmetric key generate, symmetric key
import, and symmetric key export callable services provide a way of
distributing DES DATA keys protected under a PKA key. See Chapter 3,
“Introducing PKA Cryptography and Using PKA Callable Services” on
page 47 for additional information.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 23

Symmetric Key Export Callable Service
This service transfers an application-supplied symmetric key (a DATA key) from
encryption under the DES host master key to encryption under an
application-supplied RSA public key. (There are two types of PKA public key tokens:
RSA and DSS. This callable service can use only the RSA type.) The
application-supplied DATA key must be an ICSF DES internal key token or the label
of such a token in the CKDS. The symmetric key import callable service can import
the PKA-encrypted form at the receiving node.

Symmetric Key Generate Callable Service
This service generates a symmetric key (that is, a DATA key) and returns it
encrypted using DES and encrypted under an RSA public key token. (There are two
types of PKA public key tokens: RSA and DSS. This callable service can use only
the RSA type.)

The DES-encrypted key can be an internal token encrypted under a host DES
master key, or an external form encrypted under a KEK. (You can use the
symmetric key import callable service to import the PKA-encrypted form.)

Symmetric Key Import Callable Service
This service imports a symmetric (DES) DATA key enciphered under an RSA public
key. (There are two types of PKA private key tokens: RSA and DSS. This callable
service can use only the RSA type.) This service returns the key in operational
form, enciphered under the DES master key.

Transform CDMF Key Callable Service
This service is available for S/390 Enterprise Servers and S/390 Multiprise only. It
changes a CDMF DATA key in an internal or external token to a transformed
shortened DES key. It ignores the input internal DES token markings and marks the
output internal token for use in the DES. You need to use this service only if you
have a CDMF or DES-CDMF system that needs to send CDMF-encrypted data to a
DES-only system. The CDMF or DES-CDMF system must generate the key,
shorten it, and pass it to the DES-only system.

If the input DATA key is in an external token, the operational KEK must be marked
as DES or SYS-ENC. The service fails for an external DATA key encrypted under a
KEK that is marked as CDMF.

User Derived Key Callable Service
This service generates a single-length or double-length MAC key, or updates an
existing user-derived key. A single-length MAC key can be used to compute a
Message Authentication Code (MAC) following the ANSI X9.9, ANSI X9.19, or the
Europay, MasterCard, Visa (EMV) Specification MAC processing rules. A
double-length MAC key can be used to compute a MAC following the ANSI X9.19
optional double MAC processing rule or the EMV rules.

Callable Services for Dynamic CKDS Update
ICSF provides the dynamic CKDS update services that allow applications to directly
manipulate both the DASD copy and in-storage copy of the current CKDS.

Note: Applications using the dynamic CKDS update callable services can run
concurrently with other operations that affect the CKDS, such as KGUP,
CKDS conversion, REFRESH, and dynamic master key change. An
operation can fail if it needs exclusive or shared access to the same DASD
copy of the CKDS that is held shared or exclusive by another operation.
ICSF provides serialization to prevent data loss from attempts at concurrent

24 z/OS V1R3.0 ICSF Application Programmer’s Guide

access, but your installation is responsible for the effective management of
concurrent use of competing operations. Consult your system administrator
or system programmer for your installation guidelines.

The syntax of the key record create, key record read, and key record write services
is identical with the same services provided by the Transaction Security System
security application programming interface. Key management applications that use
these common interface verbs can run on both systems without change.

Key Record Create Callable Service
This service accepts a key label and creates a null key record in both the DASD
copy and in-storage copy of the CKDS. The record contains a key token set to
binary zeros and is identified by the key label passed in the call statement. The key
label must be unique. Callers must be in task mode and cannot be in cross memory
mode.

Before you can update a key record using either the dynamic CKDS update
services or KGUP, that record must already exist in the CKDS. You can use either
the key record create service, KGUP, or your key entry hardware to create the initial
record in the CKDS.

Key Record Delete Callable Service
This service accepts a unique key label and deletes the associated key record from
both the in-storage and DASD copies of the CKDS. This service deletes the entire
record, including the key label from the CKDS. Callers must be in task mode and
cannot be in cross memory mode to execute this service.

Key Record Read Callable Service
This service copies an internal key token from the in-storage CKDS to the
application storage, where it may be used directly in other cryptographic services.
Key labels specified with this service must be unique.

Key Record Write Callable Service
This service accepts an internal key token and a label and writes the key token to
the CKDS record identified by the key label. The key label must be unique.
Application calls to this service write the key token to both the DASD copy and
in-storage copy of the CKDS, so the record must already exist in both copies of the
CKDS. Callers must be in task mode and cannot be in cross memory mode.

Callable Services that Support Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol, developed by Netscape Development
Corporation, provides communications privacy over the Internet. Client/server
applications can use the SSL protocol to provide secure communications and
prevent eavesdropping, tampering, or message forgery.

ICSF provides callable services that support the RSA-encryption and
RSA-decryption of PKCS 1.2-formatted symmetric key data to produce symmetric
session keys. These session keys can then be used to establish an SSL session
between the sender and receiver.

PKA Decrypt Callable Service
The PKA decrypt callable service uses the corresponding private RSA key to
unwrap the RSA-encrypted key and deformat the key value. This service then
returns the clear key value to the application.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 25

PKA Encrypt Callable Service
The PKA encrypt callable service encrypts a supplied clear key value under an RSA
public key. Currently, the supplied key can be formatted using the PKCS 1.2 or
ZERO-PAD methods prior to encryption.

System Encryption Algorithm
ICSF uses either the DES algorithm or the Commercial Data Masking Facility
(CDMF) to encipher and decipher data. The CDMF defines a scrambling technique
for data confidentiality. It is intended to be a substitute for DES for those customers
who have been previously prohibited from receiving IBM products that support DES
data confidentiality services. The CDMF data confidentiality algorithm is composed
of two processes: a key shortening process and a standard DES process to
encipher and decipher data.

Your system can be one of the following:
v DES
v CDMF
v DES-CDMF

A DES system protects data using a single-length, double-length, or triple-length
DES data-encrypting key and the DES algorithm.

A CDMF system protects data using a single-length DES data-encrypting key and
the CDMF. You input a standard single-length data-encrypting key to the encipher
(CSNBENC) and decipher (CSNBDEC) callable services. The single-length
data-encrypting key that is intended to be passed to the CDMF is called a CDMF
key. Cryptographically, it is indistinguishable from a DES data-encrypting key.
Before the key is used to encipher or decipher data, however, the Cryptographic
Coprocessor Feature hardware cryptographically shortens the key as part of the
CDMF process. This transformed, shortened data-encrypting key can be used only
in the DES. (It must never be used in the CDMF; this would result in a double
shortening of the key.) When used with the DES, a transformed, shortened
data-encrypting key produces results identical to those that the CDMF would
produce using the original single-length key.

A DES-CDMF system protects data using either the DES or the CDMF. The default
is DES.

ICSF provides functions to mark internal IMPORTER, EXPORTER, and DATA key
tokens with data encryption algorithm bits. IMPORTER and EXPORTER KEKs
are marked when they are installed in operational form in ICSF. Your cryptographic
key administrator does this. (See z/OS ICSF Administrator’s Guide for details.)
Whenever a DATA key is imported or generated in concert with a marked KEK, this
marking is transferred to the DATA key token, unless the token copying function of
the callable service is used to override the KEK marking with the marking of the key
token passed. These data encryption algorithm bits internally drive the DES or
CDMF for the ICSF encryption services. External key tokens are not marked with
these data encryption algorithm bits.

IMPORTER and EXPORTER KEKs can have data encryption algorithm bit markings
of CDMF (X'80'), DES (X'40'), or SYS-ENC (X'00'). DATA keys generated or
imported with marked KEKs will also be marked. A CDMF-marked KEK will transfer
a data encryption algorithm bit marking of CDMF (X'80') to the DATA key token. A
DES-marked KEK will transfer a data encryption algorithm bit marking of DES
(X'00') to the DATA key token. A SYS-ENC-marked KEK will transfer a CDMF

26 z/OS V1R3.0 ICSF Application Programmer’s Guide

(X'80') marking to the DATA key token on a CDMF system, and a DES (X'00')
marking to the DATA key token on DES-CDMF and DES systems.

Notes:

1. For the multiple secure key import callable service the token markings on the
KEK are ignored. In this case, the algorithm choice specified in the rule array
determines the markings on the DATA key.

2. Propagation of data encryption algorithm bits and token copying are only
performed when the ICSF callable service is performed on the Cryptographic
Coprocessor Feature. The PCI Cryptographic Coprocessor does not perform
these functions.

Table 3 summarizes the data encryption algorithm bits by key type, and the
algorithm they drive in the ICSF encryption services.

Table 3. Summary of Data Encryption Standard Bits

Algorithm Key Type Bits

CDMF DATA X'80'

KEK X'80'

DES DATA X'00'

KEK X'40'

System Default Algorithm KEK X'00'

For CUSP/PCF users, your system programmer specifies a default encryption mode
of DES or CDMF when installing ICSF. (See z/OS ICSF System Programmer’s
Guide for details.)

ANSI X9.17 Key Management Services
The ANSI X9.17 key management standard defines a process for protecting and
exchanging DES keys. The ANSI X9.17 standard defines methods for generating,
exchanging, using, storing, and destroying these keys. ANSI X9.17 keys are
protected by the processes of notarization and offsetting, instead of control vectors.
In addition to providing services to support these processes, ICSF also defines and
uses an optional process of partial notarization.

Offsetting involves exclusive-ORing a key-encrypting key with a counter. The
counter, a 56-bit binary number that is associated with a key-encrypting key and
contained in certain ANSI X9.17 messages, prevents either a replay or an
out-of-sequence transmission of a message. When the associated AKEK is first
used, the application initializes the counter. With each additional use, the application
increments the counter.

Notarization associates the identities of a pair of communicating parties with a
cryptographic key. The notarization process cryptographically combines a key with
two 16-byte quantities, the origin identifier and the destination identifier, to produce
a notarized key. The notarization process is completed by offsetting the AKEK with
a counter.

ICSF makes it possible to divide the AKEK notarization process into two steps. In
the first step, partial notarization, the AKEK is cryptographically combined with the
origin and destination identifiers and returned in a form that can be stored in the
CKDS or application storage. In the second step, the partially notarized AKEK is
exclusive OR-ed with a binary counter to complete the notarization process. Partial

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 27

notarization improves performance when you use an AKEK for many cryptographic
service messages, each with a different counter. For details of the partial
notarization calculations, refer to “ANSI X9.17 Partial Notarization Method” on
page 441.

ICSF provides the following callable services to support the ANSI X9.17 key
management standard. Except where noted, these callable services have the
identical syntax as the Transaction Security System verbs of the same name. With
few exceptions, key management applications that use these common callable
services, or verbs, can be executed on either system without change. Internal
tokens cannot be interchanged; external tokens can be.

Key Generate Callable Service Used to Generate an AKEK
The key generate callable service, described in “Key Generate Callable Service” on
page 22, can also be used to generate an AKEK in the operational form. It
generates either an 8-byte or 16-byte AKEK and places it in a skeleton key token
created by the key token build callable service. The length of the AKEK is
determined by the key length keyword specified when building the key token.

ANSI X9.17 EDC Generate Callable Service
This service generates an ANSI X9.17 error detection code on an arbitrary length
string.

ANSI X9.17 Key Export Callable Service
This service uses the ANSI X9.17 protocol to export a DATA key or a pair of DATA
keys, with or without an AKEK. It also provides the ability to convert a single
supplied DATA key or combine two supplied DATA keys into a MAC key.

ANSI X9.17 Key Import Callable Service
This service uses the ANSI X9.17 protocol to import a DATA key or a pair of DATA
keys, with or without an AKEK. It also provides the ability to convert a single
supplied DATA key or combine two supplied DATA keys into a MAC key. The syntax
is identical to the Transaction Security System verb, with the following exceptions:

v Keys cannot be imported directly into the CKDS.

ANSI X9.17 Key Translate Callable Service
This service translates one or two DATA keys or an AKEK from encryption under
one AKEK to encryption under another AKEK, using the ANSI X9.17 protocol.

ANSI X9.17 Transport Key Partial Notarize Callable Service
This service preprocesses or partially notarizes an AKEK with origin and destination
identifiers. The partially notarized key is supplied to the ANSI X9.17 key export,
ANSI X9.17 key import, or ANSI X9.17 key translate callable service to complete
the notarization process. The syntax is identical to the Transaction Security System
verb except that:

v The callable service does not update the CKDS.

Enciphering and Deciphering Data
The encipher and decipher callable services protect data off the host. ICSF protects
sensitive data from disclosure to people who do not have authority to access it.
Using algorithms that make it difficult and expensive for an unauthorized user to
derive the original clear data within a practical time period assures privacy.

To protect data, ICSF can use the Data Encryption Standard (DES) algorithm to
encipher or decipher data or keys. The algorithm is documented in the Federal
Information Processing Standard #46. You can use the encipher and decipher

28 z/OS V1R3.0 ICSF Application Programmer’s Guide

callable services to encipher and decipher data with encrypted keys. ICSF also
supports the CDMF encryption mode. See “System Encryption Algorithm” on page
26 for more information.

The Symmetric Key Encipher and Symmetric Key Decipher callable services are
used to encipher and decipher data in an address space or a data space using the
cipher block chaining for electronic code book modes. The Advanced Encryption
Standard (AES) is supported. AES encryption uses a 128-, 192- or 256-bit key. Only
clear keys will be supported. The AES encryption is subject to the same availability
restrictions as triple-DES encryption.

Encoding and Decoding Data
The encode and decode callable services perform functions with clear keys. Encode
enciphers 8 bytes of data using the electronic code book (ECB) mode of the DES
and a clear key. Decode does the inverse of the encode service. These services
are available only on a DES-capable system. (See “System Encryption Algorithm”
on page 26 for more information.)

Translating Ciphertext
ICSF also provides a ciphertext translate callable service. This service is available
only on a DES-capable system. (See “System Encryption Algorithm” on page 26 for
more information.) It deciphers encrypted data (ciphertext) under one encryption key
and reenciphers it under another key without having the data appear in the clear
outside the cryptographic feature. Such a function is useful in a multiple node
network, where sensitive data is passed through multiple nodes before it reaches its
final destination. Different nodes use different keys in the process. For more
information about different nodes, see “Using the Ciphertext Translate Callable
Service” on page 39.

The keys cannot be used for the encipher and decipher callable services.

Managing Data Integrity and Message Authentication
To ensure the integrity of transmitted messages and stored data, ICSF provides:
v Message authentication code (MAC)
v Several hashing functions, including modification detection code (MDC), SHA-1,

and MD5

(See Chapter 8, “Using Digital Signatures” on page 265 for an alternate method of
message authentication using digital signatures.)

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender and also the integrity of the data, consider message authentication code
processing. If you need to ensure the integrity of transmitted data in an environment
where it is not possible for the sender and the receiver to share a secret
cryptographic key, consider hashing functions, such as the modification detection
code process.

Message Authentication Code Processing
The process of verifying the integrity and authenticity of transmitted messages is
called message authentication. Message authentication code (MAC) processing
allows you to verify that a message was not altered or a message was not
fraudulently introduced onto the system. You can check that a message you have

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 29

|
|
|
|
|
|

received is the same one sent by the message originator. The message itself may
be in clear or encrypted form. The comparison is performed within the cryptographic
feature. Since both the sender and receiver share a secret cryptographic key used
in the MAC calculation, the MAC comparison also ensures the authenticity of the
message.

In a similar manner, MACs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

ICSF provides support for both single-length and double-length MAC generation
and MAC verification keys. With the ANSI X9.9-1 single key algorithm, use the
single-length MAC and MACVER keys. With the ANSI X9.19 optional double key
algorithm, use the double-length DATAM and DATAMV keys available with APAR
OW37791.

ICSF provides support for the use of data-encrypting keys in the MAC generation
and verification callable services, and also the use of a MAC generation key in the
MAC verification callable service. This support permits ICSF MAC services to
interface more smoothly with non-CCA key distribution system, including those
implementing the ANSI X9.17 protocol.

MAC Generation Callable Service
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. The callable service
computes the message authentication code using one of the following methods:

v Using the ANSI X9.9-1 single key algorithm, a single-length MAC generation key
or data-encrypting key, and the message text.

v Using the ANSI X9.19 optional double key algorithm, a double-length MAC
generation key and the message text.

v Using the Europay, MasterCard and Visa (EMV) padding rules.

ICSF allows a MAC to be the leftmost 32 or 48 bits of the last block of the
ciphertext or the entire last block (64 bits) of the ciphertext. The originator of the
message sends the message authentication code with the message text.

MAC Verification Callable Service
When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. If the two
codes are the same, the message sent was the same one received. A return code
indicates whether the MACs are the same.

The MAC verification callable service can use either of the following methods to
generate the MAC for authentication:

v The ANSI X9.9-1 single key algorithm, a single-length MAC verification or MAC
generation key (or a data-encrypting key), and the message text.

v The ANSI X9.19 optional double key algorithm, a double-length MAC verification
or MAC generation key and the message text.

v Using the Europay, MasterCard and Visa (EMV) padding rules.

The method used to verify the MAC should correspond with the method used to
generate the MAC.

30 z/OS V1R3.0 ICSF Application Programmer’s Guide

Hashing Functions
Hashing functions include one-way hash generation and modification detection code
(MDC) processing.

One-Way Hash Generate Callable Service

This service hashes a supplied message. Supported hashing methods include:
v SHA-12

v MD5
v RIPEMD-160

Also supported, through the MDC generation callable service are:
v MDC-2
v MDC-4
v PADMDC-2
v PADMDC-4

MDC Generation Callable Service
The modification detection code (MDC) provides a form of support for data integrity.
The MDC allows you to verify that data was not altered during transmission or while
in storage. The originator of the data ensures that the MDC is transmitted with
integrity to the intended receiver of the data. For instance, the MDC could be
published in a reliable source of public information. When the receiver gets the
data, an application program can generate an MDC, and compare it with the
original MDC value. If the MDC values are equal, the data is accepted as unaltered.
If the MDC values differ the data is assumed to be bogus.

In a similar manner, MDCs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

When data is sent, an application program can generate a modification detection
code for it using the MDC generation callable service. The callable service
computes the modification detection code by encrypting the data using a
publicly-known cryptographic one-way function. The MDC is a 128-bit value that is
easy to compute for specific data, yet it is hard to find data that will result in a given
MDC.

Once an MDC has been established for a file, the MDC generate service can be
run at any later time on the file. The resulting MDC can then be compared with the
previously established MDC to detect deliberate or inadvertent modification.

Managing Personal Authentication
The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across the financial industry networks. ICSF
checks a customer-supplied PIN by verifying it using an algorithm. The financial
industry needs functions to generate, translate, and verify PINs. These functions
prevent unauthorized disclosures when organizations handle personal identification
numbers.

ICSF supports the following algorithms for generating and verifying personal
identification numbers:

2. The Secure Hash Algorithm (SHA) is also called the Secure Hash Standard (SHS), which Federal Information Processing Standard
(FIPS) Publication 180 defines.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 31

v IBM 3624
v IBM 3624 PIN offset
v IBM German Bank Pool
v IBM German Bank Pool PIN Offset (GBP-PINO)
v VISA PIN validation value
v Interbank

Note: Interbank is available only on S/390 Enterprise Servers and S/390 Multiprise.

With ICSF, you can translate PIN blocks from one format to another. ICSF supports
the following formats:
v ANSI X9.8
v ISO formats 0, 1, 2
v VISA formats 1, 2, 3, 4
v IBM 4704 Encrypting PINPAD format
v IBM 3624 formats
v IBM 3621 formats
v ECI formats 1, 2, 3

With the capability to translate personal identification numbers into different PIN
block formats, you can use personal identification numbers on different systems.

Verifying Credit Card Data
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that relates
to the personal account number (PAN), the card expiration date, and the service
code. The VISA card-verification value (CVV) and the MasterCard card-verification
code (CVC) can be encoded on either track 1 or track 2 of a magnetic striped card
and are used to detect forged cards. Because most online transactions use track-2,
the ICSF callable services generate and verify the CVV3 by the track-2 method.

The VISA CVV service generate callable service calculates a 1- to 5-byte value
through the DES-encryption of the PAN, the card expiration date, and the service
code using two data-encrypting keys or two MAC keys. The VISA CVV service
verify callable service calculates the CVV by the same method, compares it to the
CVV supplied by the application (which reads the credit card’s magnetic stripe) in
the CVV_value, and issues a return code that indicates whether the card is
authentic.

Clear PIN Encrypt Callable Service
To format a PIN into a PIN block format and encrypt the results, use the Clear PIN
Encrypt callable service. You can also use this service to create an encrypted PIN
block for transmission. With the RANDOM keyword, you can have the service
generate random PIN numbers. Use of this service requires the optional PCI
Cryptographic Coprocessor.

Clear PIN Generate Alternate Callable Service
To generate a clear VISA PIN validation value from an encrypted PIN block, call the
clear PIN generate alternate callable service. This service also supports the
IBM-PINO algorithm to produce a 3624 offset from a customer selected encrypted
PIN.

3. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

32 z/OS V1R3.0 ICSF Application Programmer’s Guide

Note: The PIN block must be encrypted under either an input PIN-encrypting key
(IPINENC) or output PIN-encrypting key (OPINENC). Using an IPINENC key
requires NOCV keys to be enabled in the CKDS. Functions other than VISA
PIN validation value generation require the optional PCI Cryptographic
Coprocessor.

Clear PIN Generate Callable Service
To generate personal identification numbers, call the Clear PIN generate callable
service. Using a PIN generation algorithm, data used in the algorithm, and the PIN
generation key, the callable service generates a clear PIN, a PIN verification value,
or an offset. The callable service can only execute in special secure mode, which is
described in “Special Secure Mode” on page 9.

Encrypted PIN Generate Callable Service
To generate personal identification numbers, call the Encrypted PIN generation
callable service. Using a PIN generation algorithm, data used in the algorithm, and
the PIN generation key, the callable service generates a PIN and using a PIN block
format and the PIN encrypting key, formats and encrypts the PIN. Use of this
service requires the optional PCI Cryptographic Coprocessor.

Encrypted PIN Translate Callable Service
To translate a PIN from one PIN-encrypting key to another or from one PIN block
format to another or both, call the Encrypted PIN translation callable service. You
must identify the input PIN-encrypting key that originally enciphers the PIN. You
also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format.

Encrypted PIN Verify Callable Service
To verify a supplied PIN, call the Encrypted PIN verify callable service. You need to
specify the supplied enciphered PIN, the PIN-encrypting key that enciphers it, and
other relevant data. You must also specify the PIN verification key and PIN
verification algorithm. It compares the two personal identification numbers; if they
are the same, it verifies the supplied PIN. See Chapter 7, “Financial Services” on
page 209 for additional information.

Secure Messaging

The following services will assist applications in encrypting secret information such
as clear keys and PIN blocks in a secure message. These services will execute
within the secure boundary of the PCI Cryptographic Coprocessor.

The Secure Messaging for Keys (CSNBSKY) callable service encrypts a text block,
including a clear key value decrypted from an internal or external DES token.

The Secure Messaging for PINs (CSNBSPN) callable service encrypts a text block,
including a clear PIN block recovered from an encrypted PIN block.

Trusted Key Entry (TKE) Support

The Trusted Key Entry (TKE) workstation is an optional feature. It offers an
alternative to clear key entry. You can use the TKE workstation to load:

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 33

v DES master keys, PKA master keys (see “PKA Master Keys” on page 47), and
operational TRANSPORT and PIN keys in a secure way.

v SYM-MK and ASYM-MK master keys on the PCI Cryptographic Coprocessor.

You can load keys remotely and for multiple Cryptographic Coprocessor Features
and PCI Cryptographic Coprocessors. The TKE workstation eases the
administration for using one Cryptographic Coprocessor Feature as a production
machine and as a test machine at the same time, while maintaining security and
reliability.

The TKE workstation can be used for enabling/disabling access control points for
callable services executed on PCI Cryptographic Coprocessors. See Appendix H,
“Access Control Points and Callable Services” on page 447 for additional
information.

For complete details about the TKE workstation (Version 3 or later), see z/OS ICSF
TKE Workstation User’s Guide 2000.

Utilities
ICSF provides the following utilities.

Character/Nibble Conversion Callable Services
The character/nibble conversion callable services are utilities that convert a binary
string to a character string and vice versa.

Code Conversion Callable Services
The code conversion callable services are utilities that convert EBCDIC data to
ASCII data and vice versa.

X9.9 Data Editing Callable Service
The data editing callable service is a utility that edits an ASCII text string according
to the editing rules of ANSI X9.9-4.

Typical Sequences of ICSF Callable Services
Sample sequences in which the ICSF callable services might be called are shown
in Table 4 on page 35.

34 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 4. Combinations of the Callable Services

Combination A (DATA keys only) Combination B

1. Random number generate 1. Random number generate
2. Clear key import or 2. Secure key import or

multiple clear key import multiple secure key import
3. Encipher/decipher 3. Any service
4. Data key export or key export 4. Data key export for DATA keys, or

(optional step) key export in the general case
(optional step)

Combination C Combination D

1. Key generate (OP form only) 1. Key generate (OPEX form)
2. Any service 2. Any service
3. Key export (optional)

Combination E Combination F

1. Key generate (IM form only) 1. Key generate (IMEX form)
2. Key import 2. Key import
3. Any service 3. Any service
4. Key export (optional)

Combination G Combination H

1. Key generate 1. Key import
2. Key record create 2. Key record create
3. Key record write 3. Key record write
4. Any service (passing label 4. Any service (passing label

of the key just generated) of the key just generated)

Combination I

1. Key token build to create
key token skeleton

2. Key generate to OP form of
AKEK using key token skeleton

3. Use AKEK in any ANSI X9.17
service

Notes:

1. An example of “any service” is CSNBENC.

2. These combinations exclude services that can be used on their own; for example, key export or encode, or using
key generate to generate an exportable key.

3. These combinations do not show key communication, or the transmission of any output from an ICSF callable
service.

The key forms are described in “Key Generate (CSNBKGN)” on page 82.

Key Forms and Types Used in the Key Generate Callable Service
The key generate callable service is the most complex of all the ICSF callable
services. This section provides examples of the key forms and key types used in
the key generate callable service.

Generating an Operational Key
To generate an operational key, choose one of the following methods:

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 35

v For operational keys, call the key generate callable service (CSNBKGN).
Table 15 on page 91 and Table 16 on page 91 show the key type and key form
combinations for a single key and for a key pair.

v For operational keys, call the random number generate callable service
(CSNBRNG) and specify the form parameter as RANDOM. Specify ODD parity
for a random number you intend to use as a key. Then pass the generated value
to the secure key import callable service (CSNBSKI) with a required key type.
The required key type is now in operational form.

This method requires a cryptographic unit to be in special secure mode. For
more information about special secure mode, see “Special Secure Mode” on
page 9.

v For data-encrypting keys, call the random number generate callable service
(CSNBRNG) and specify the form parameter as ODD. Then pass the generated
value to the clear key import callable service (CSNBCKI) or the multiple clear key
import callable service (CSNBCKM). The DATA key type is now in operational
form.

You cannot generate a PIN verification (PINVER) key in operational form because
the originator of the PIN generation (PINGEN) key generates the PINVER key in
exportable form, which is sent to you to be imported.

Generating an Importable Key
To generate an importable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in importable
form, obtain it directly by generating a single key. If you want any other key type in
importable form, request a key pair where either the first or second key type is
importable (IM). Discard the generated key form that you do not need.

Generating an Exportable Key
To generate an exportable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in exportable
form, obtain it directly by generating a single key. If you want any other key type in
exportable form, request a key pair where either the first or second key type is
exportable (EX). Discard the generated key form that you do not need.

Examples of Single-Length Keys in One Form Only
Key Key
Form 1

OP DATA Encipher or decipher data. Use data key export or key export
to send encrypted key to another cryptograpic partner. Then
communicate the ciphertext.

OP MAC MAC generate. Because no MACVER key exists, there is no
secure communication of the MAC with another cryptographic
partner.

IM DATA Key Import, and then encipher or decipher. Then key export
to communicate ciphertext and key with another cryptographic
partner.

EX DATA You can send this key to a cryptographic partner, but you

36 z/OS V1R3.0 ICSF Application Programmer’s Guide

can do nothing with it directly. Use it for the key
distribution service. The partner could then use key import
to get it in operational form, and use it as in OP DATA
above.

Examples of OPIM Single-Length, Double-Length, and Triple-Length
Keys in Two Forms

The first two letters of the key form indicate the form that key type 1 parameter is
in, and the second two letters indicate the form that key type 2 parameter is in.
Key Type Type
Form 1 2

OPIM DATA DATA Use the OP form in encipher. Use key export with the
OP form to communicate ciphertext and key with
another cryptographic partner. Use key import at a
later time to use encipher or decipher with the same
key again.

OPIM MAC MAC Single-length MAC generation key. Use the OP form in
MAC generation. You have no corresponding MACVER key,
but you can call the MAC verification service with
the MAC key directly. Use the key import callable
service and then compute the MAC again using the MAC
verification callable service, which comapres the MAC
it generates with the MAC supplied with the message
and issues a return code indicating whether they
compare.

Examples of OPEX Single-Length, Double-Length, and Triple-Length
Keys in Two Forms

Key Type Type
Form 1 2

OPEX DATA DATA Use the OP form in encipher. Send the EX form and
the ciphertext to another cryptographic partner.

OPEX MAC MAC Single-length MAC generation key. Use the OP form in
both MAC generation and MAC verification. Send the
EX form to a cryptographic partner to be used in the
MAC generation or MAC verification services.

OPEX MAC MACVER Single-length MAC generation and MAC verification
keys. Use the OP form in MAC generation. Send the EX
form to a cryptographic partner where it will be put
into key import, and then MAC verification, with the
message and MAC that you have also transmitted.

OPEX PINGEN PINVER Use the OP form in Clear PIN generate. Send the
EX form to a cryptographic partner where it is put
into key import, and then Encrypted PIN verify,
along with an IPINENC key.

OPEX IMPORTER EXPORTER
Use the OP form in key import, key generate,
or secure key import. Send the EX form to a
cryptographic partner where it is used in key
export, data key export, or key generate, or put in
the CKDS.

OPEX EXPORTER IMPORTER
Use the OP form in key export, data key export,
or key generate. Send the EX form to a cryptographic
partner where it is put into the CKDS or used in key
import, key generate or secure key import.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 37

When you and your partner have the OPEX IMPORTER EXPORTER, OPEX
EXPORTER IMPORTER pairs of keys in “Examples of OPEX Single-Length,
Double-Length, and Triple-Length Keys in Two Forms” on page 37 installed, you
can start key and data exchange.

Examples of IMEX Single-Length and Double-Length Keys in Two
Forms

Key Type Type
Form 1 2

IMEX DATA DATA Use the key import callable service to import
IM form and use the OP form in encipher. Send
the EX form to a cryptographic partner.

IMEX MAC MACVER Use the key import callable service to import
the IM form and use the OP form in MAC
generate. Send the EX form to a cryptographic
partner who can verify the MAC.

IMEX IMPORTER EXPORTER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
IMPORTER/EXPORTER key between you and your
partner.

IMEX PINGEN PINVER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
PINGEN/PINVER key between you and your partner.

Examples of EXEX Single-Length and Double-Length Keys in Two
Forms

For the keys shown in the following list, you are providing key distribution services
for other nodes in your network, or other cryptographic partners. Neither key type
can be used in your installation.

Key Type Type
Form 1 2

EXEX DATA DATA Send the first EX form to a cryptographic
EXEX MAC MACVER partner with the corresponding IMPORTER and
EXEX IMPORTER EXPORTER send the second EX form to another
EXEC OPINENC IPINENC cryptographic partner with the corresponding

IMPORTER. This exchange establishes a key
between two partners.

Generating AKEKs
AKEKs are bidirectional and are OP-form-only keys that can be used in both import
and export. Before using the key generate callable service to create an AKEK, you
need to use the key token build callable service to create a key token for receiving
the AKEK. The steps involved in this process are presented below.

1. Use the key token build callable service with the following parameter values:

Parameter Value
Key_type AKEK
Rule_array INTERNAL NO-KEY {SINGLE or DOUBLE-O}

2. Use the key generate callable service with the following parameter values:

Parameter Value
Key_form OP
Key_type_1 TOKEN

38 z/OS V1R3.0 ICSF Application Programmer’s Guide

Generated_key_identifier_1
The skeleton key token created in step 1

Using the Ciphertext Translate Callable Service

Note: The ciphertext translate callable service does not work in CDMF-only
systems (see “System Encryption Algorithm” on page 26).

This section describes a scenario using the encipher, ciphertext translate, and
decipher callable services with four network nodes: A, B, C, and D. You want to
send data from your network node A to a destination node D. You cannot
communicate directly with node D, and nodes B and C are situated between you.
You do not want nodes B and C to decipher your data.

At node A, you use the encipher callable service (CSNBENC or CSNBENC1). Node
D uses the decipher callable service (CSNBDEC or CSNBDEC1).

Node B and C will use the ciphertext translate callable service. Consider the keys
that are needed to support this process:

1. At your node, generate one key in two forms: OPEX DATA DATAXLAT

2. Send the exportable DATAXLAT key to node B.

3. Node B and C need to share a DATAXLAT key, so generate a different key in
two forms: EXEX DATAXLAT DATAXLAT.

4. Send the first exportable DATAXLAT key to node B.

5. Send the second exportable DATAXLAT key to node C.

6. Node C and node D need to share a DATAXLAT key and a DATA key. Node D
can generate one key in two forms: OPEX DATA DATAXLAT.

7. Node D sends the exportable DATAXLAT key to node C.

The communication process is shown as:
Node: A B C D

Callable
Service: Encipher Ciphertext Translate Ciphertext Translate Decipher

Keys: DATA DATAXLAT DATAXLAT DATAXLAT DATAXLAT DATA

Key Pairs: |____ = ____| |____ = ____| |____ = ____|

Therefore, you need three keys, each in two different forms. You can generate two
of the keys at node A, and node D can generate the third key. Note that the key
used in the decipher callable service at node D is not the same key used in the
encipher callable service at node A.

Summary of the DES Callable Services
Table 5 lists the DES callable services described in this book, and their
corresponding verbs. The figure also references the chapter that describes the
callable service.

Table 5. Summary of ICSF DES Callable Services

Verb Service Name Function

Chapter 4, “Managing DES Cryptographic Keys”

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 39

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNBCKI Clear key import Imports an 8-byte clear DATA key, enciphers it
under the master key, and places the result
into an internal key token. CSNBCKI converts
the clear key into operational form as a DATA
key.

CSNBCVG Control vector generate Builds a control vector from keywords specified
by the key_type and rule_array parameters.

CSNBCVT Control vector translate Changes the control vector used to encipher
an external key.

CSNBCVE Cryptographic variable encipher Uses a CVARENC key to encrypt plaintext by
using the Cipher Block Chaining (CBC)
method. The plaintext must be a multiple of
eight bytes in length.

CSNBDKX Data key export Converts a DATA key from operational form
into exportable form.

CSNBDKM Data key import Imports an encrypted source DES single- or
double-length DATA key and creates or
updates a target internal key token with the
master key enciphered source key.

CSNBDKG Diversified key generate Generates a key based upon the
key-generating key, the processing method,
and the parameter data that is supplied.

CSNBKEX Key export Converts any key from operational form into
exportable form. (However, this service does
not export a key that was marked
non-exportable when it was imported.)

CSNBKGN Key generate Generates a 64-bit, 128-bit, or 192-bit odd
parity key, or a pair of keys; and returns them
in encrypted forms (operational, exportable, or
importable). CSNBKGN does not produce keys
in plaintext.

CSNBKIM Key import Converts any key from importable form into
operational form.

CSNBKPI Key part import Combines the clear key parts of any key type
and returns the combined key value in an
internal key token or an update to the CKDS.

CSNBKRC Key record create Adds a key record containing a key token set
to binary zeros to both the in-storage and
DASD copies of the CKDS.

CSNBKRD Key record delete Deletes a key record from both the in-storage
and DASD copies of the CKDS.

CSNBKRR Key record read Copies an internal key token from the
in-storage copy of the CKDS to application
storage.

CSNBKRW Key record write Writes an internal key token to the CKDS
record specified in the key label parameter.
Updates both the in-storage and DASD copies
of the CKDS currently in use.

40 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNBKYT or CSNBKYTX Key test service Generates or verifies (depending on keywords
in the rule array) a secure verification pattern
for keys. CSNBKYT requires the tested key to
be in the clear or encrypted under the master
key. CSNBKYTX also allows the tested key to
be encrypted under a key-encrypting key.

CSNBKTB Key token build Builds an internal or external token from the
supplied parameters. You can use this callable
service to build an internal token for an AKEK
for input to the key generate and key part
import callable services. You can also use this
service to build CCA key tokens for all key
types ICSF supports or to update the DES,
CDMF, or SYS-ENC markings in a supplied
DATA, IMPORTER, or EXPORTER token.

CSNBKTR Key translate Uses one key-encrypting key to decipher an
input key and then enciphers this key using
another key-encrypting key within the secure
environment.

CSNBCKM Multiple clear key import Imports a single-, double-, or triple-length clear
DATA key, enciphers it under the master key,
and places the result into an internal key token.
CSNBCKM converts the clear key into
operational form as a DATA key.

CSNBSKM Multiple secure key import Enciphers a single-, double-, or triple-length
clear key under the master key or an input
importer key, and places the result into an
internal or external key token as any key type.
Triple-length keys can only be imported as
DATA keys.

CSNBSKM executes only in special secure
mode.

CSNDPKD PKA decrypt Uses an RSA private key to decrypt the
RSA-encrypted key value and return the clear
key value to the application.

CSNDPKE PKA encrypt Encrypts a supplied clear key value under an
RSA public key.

CSNBPEX Prohibit export Modifies an operational key so that it cannot be
exported.

CSNBPEXX Prohibit export extended Changes the external token of a key in
exportable form so that it can be imported at
the receiver node but not exported from that
node.

CSNBRNG Random number generate Generates an 8-byte random number. The
output can be specified in three forms of parity:
RANDOM, ODD, and EVEN.

CSNBSKI Secure key import Enciphers a clear key under the master key,
and places the result into an internal or
external key token as any key type.

CSNBSKI executes only in special secure
mode.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 41

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNDSYG Symmetric key generate Generates a symmetric DATA key and returns
the key in two forms: enciphered under the
DES master key or KEK and under a PKA
public key.

CSNDSYI Symmetric key import Imports a symmetric DATA key enciphered
under an RSA public key into operational form
enciphered under a DES master key.

CSNDSYX Symmetric key export Transfers an application-supplied symmetric
key (a DATA key) from encryption under the
DES host master key to encryption under an
application-supplied RSA public key. The
application-supplied DATA key must be an
ICSF DES internal key token or the label of
such a token in the CKDS.

CSNBTCK Transform CDMF key Changes a CDMF DATA key in an internal or
external token to a transformed shortened DES
key.

CSFUDK User Derived Key Generates single-length or double-length MAC
keys, or updates an existing user derived key.

Chapter 5, “Protecting Data”

CSNBCTT or CSNBCTT1 Ciphertext translate Translates the user-supplied ciphertext from
one key and enciphers the ciphertext to
another key. (This is for DES encryption only.)

CSNBCTT requires the ciphertext to reside in
the caller’s primary address space.

CSNBCTT1 allows the ciphertext to reside in
the caller’s primary address space or in an
z/OS MVS data space.

CSNBDEC or CSNBDEC1 Decipher Deciphers data using either the CDMF or the
cipher block chaining mode of the DES. (The
method depends on the token marking or
keyword specification.) The result is called
plaintext.

CSNBDEC requires the plaintext and ciphertext
to reside in the caller’s primary address space.

CSNBDEC1 allows the plaintext and ciphertext
to reside in the caller’s primary address space
or in an z/OS MVS data space.

CSNBDCO Decode Decodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

42 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNBENC or CSNBENC1 Encipher Enciphers data using either the CDMF or the
cipher block chaining mode of the DES. (The
method depends on the token marking or
keyword specification.) The result is called
ciphertext.

CSNBENC requires the plaintext and ciphertext
to reside in the caller’s primary address space.

CSNBENC1 allows the plaintext and ciphertext
to reside in the caller’s primary address space
or in an z/OS MVS data space.

CSNBECO Encode Encodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

CSNDSYD Symmetric key decipher Deciphers data using the AES algorithm in an
address space or a data space using the
cipher block chaining or electronic code book
modes. AES is the only algorithm supported.

CSNDSYE Symmetric key encipher Enciphers data using the AES algorithm in an
address space or a data space using the
cipher block chaining or electronic code book
modes. AES is the only algorithm supported.

Chapter 6, “Verifying Data Integrity and Authenticating Messages”

CSNBMGN or CSNBMGN1 MAC generate Generates a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string that
the application program supplies. The MAC is
computed using either the ANSI X9.9-1
algorithm or the ANSI X9.19 optional double
key algorithm.

CSNBMGN requires data to reside in the
caller’s primary address space.

CSNBMGN1 allows data to reside in the
caller’s primary address space or in an z/OS
MVS data space.

CSNBMVR or CSNBMVR1 MAC verify Verifies a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string that
the application program supplies. The MAC is
computed using either the ANSI X9.9-1
algorithm or the ANSI X9.19 optional double
key algorithm and is compared with a
user-supplied MAC.

CSNBMVR requires data to reside in the
caller’s primary address space.

CSNBMVR1 allows data to reside in the
caller’s primary address space or in an z/OS
MVS data space.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 43

|||
|
|
|

|||
|
|
|

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNBMDG or CSNBMDG1 MDC generate Generates a 128-bit modification detection
code (MDC) for a text string that the application
program supplies.

CSNBMDG requires data to reside in the
caller’s primary address space.

CSNBMDG1 allows data to reside in the
caller’s primary address space or in an z/OS
MVS data space.

CSNBOWH or CSNBOWH1 One way hash generate Generates a one-way hash on specified text.

Chapter 7, “Financial Services”

CSNBCPE Clear PIN encrypt Formats a PIN into a PIN block format and
encrypts the results.

CSNBPGN Clear PIN generate Generates a clear personal identification
number (PIN), a PIN verification value (PVV),
or an offset using one of the following
algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)
IBM German Bank Pool (GBP-PIN or
GBP-PINO)
VISA PIN validation value (VISA-PVV)
Interbank PIN (INBK-PIN)

CSNBPGN executes only in special secure
mode.

CSNBCPA Clear PIN generate alternate Generates a clear VISA PIN validation value
(PVV) from an input encrypted PIN block. The
PIN block may have been encrypted under
either an input or output PIN encrypting key.
The IBM-PINO algorithm is supported to
produce a 3624 offset from a customer
selected encrypted PIN.

CSNBEPG Encrypted PIN generate Generates and formats a PIN and encrypts the
PIN block.

CSNBPTR Encrypted PIN translate Reenciphers a PIN block from one
PIN-encrypting key to another and, optionally,
changes the PIN block format.

CSNBPVR Encrypted PIN verify Verifies a supplied PIN using one of the
following algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)
IBM German Bank Pool (GBP-PIN or
GBP-PINO)
VISA PIN validation value (VISA-PVV)
Interbank PIN (INBK-PIN)

CSNBSKY Secure messaging for keys Encrypts a text block, including a clear key
value decrypted from an internal or external
DES token.

CSNBSPN Secure messaging for PINs Encrypts a text block, including a clear PIN
block recovered from an encrypted PIN block.

CSNDSBC SET block compose Composes the RSA-OAEP block and the
DES-encrypted block in support of the SET
protocol.

44 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 5. Summary of ICSF DES Callable Services (continued)

Verb Service Name Function

CSNDSBD SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted
data back to the caller.

CSNBCSG VISA CVV service generate Generates a VISA Card Verification Value
(CVV) or a MasterCard Card Verification Code
(CVC).

CSNBCSV VISA CVV service verify Verifies a VISA Card Verification Value (CVV)
or a MasterCard Card Verification Code (CVC).

Chapter 10, “Utilities”

CSNBXBC or CSNBXCB Character/nibble conversion Converts a binary string to a character string or
vice versa.

CSNBXEA or CSNBXAE Code conversion Converts EBCDIC data to ASCII data or vice
versa.

CSNB9ED X9.9 data editing Edits an ASCII text string according to the
editing rules of ANSI X9.9–4.

Chapter 11, “Trusted Key Entry Workstation Interfaces”

CSFPCI PCI interface Puts a request to a specific PCI Cryptographic
Coprocessor queue and removes the
corresponding response when complete. Only
the Trusted Key Entry (TKE) workstation uses
this service.

CSFPKSC PKSC interface Puts a request to a specific cryptographic
module and removes the corresponding
response when complete. Only the Trusted Key
Entry (TKE) workstation uses this service.

Chapter 12, “Managing Keys According to the ANSI X9.17 Standard”

CSNAEGN ANSI X9.17 EDC generate Generates an ANSI X9.17 error detection code
on an arbitrary length string using the special
MAC key (x’0123456789ABCDEF’).

CSNAKEX ANSI X9.17 key export Uses the ANSI X9.17 protocol to export a
DATA key or a pair of DATA keys with or
without an AKEK. Supports the export of a
CCA IMPORTER or EXPORTER KEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

CSNAKIM ANSI X9.17 key import Uses the ANSI X9.17 protocol to import a
DATA key or a pair of DATA keys with or
without an AKEK. Supports the import of a
CCA IMPORTER or EXPORTER KEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

CSNAKTR ANSI X9.17 key translate Uses the ANSI X9.17 protocol to translate, in a
single service call, either one or two DATA keys
or a single KEK from encryption under one
AKEK to encryption under another AKEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

CSNATKN ANSI X9.17 transport key partial
notarize

Permits the preprocessing of an AKEK with
origin and destination identifiers to create a
partially notarized AKEK.

Chapter 2. Introducing DES Cryptography and Using DES Callable Services 45

46 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 3. Introducing PKA Cryptography and Using PKA
Callable Services

The preceding section focused on DES cryptography or secret-key cryptography.
This is symmetric—senders and receivers use the same key (which must be
exchanged securely in advance) to encipher and decipher data. DES functions are
synchronous and performed at high speed.

Public key cryptography does not require exchanging a secret key. It is
asymmetric—the sender and receiver each have a pair of keys, a public key and a
different but corresponding private key. PKA functions are performed in an
asynchronous processor; this is much slower than for DES functions.

You can use PKA support to exchange CDMF or DES secret keys securely and to
compute digital signatures for authenticating messages to users. You can also use
public key cryptography in support of secure electronic transactions over open
networks, using SET protocols.

PKA Key Algorithms
Public key cryptography uses a key pair consisting of a public key and a private
key. The PKA public key uses one of two algorithms:

v Rivest-Shamir-Adleman (RSA)

v Digital Signature Standard (DSS)

The RSA Algorithm

The RSA algorithm is the most widely used and accepted of the public key
algorithms. It uses three quantities to encrypt and decrypt text: a public exponent
(PU), a private exponent (PR), and a modulus (M). Given these three and some
cleartext data, the algorithm generates ciphertext as follows:
ciphertext = cleartextPU (modulo M)

Similarly, the following operation recovers cleartext from ciphertext:
cleartext = ciphertextPR (modulo M)

An RSA key consists of an exponent and a modulus. The private exponent must be
secret, but the public exponent and modulus need not be secret.

Digital Signature Standard (DSS)
The U.S. National Institute of Standards and Technology (NIST) defines DSS in
Federal Information Processing Standard (FIPS) Publication 186.

PKA Master Keys

PKA master keys protect private keys. On the Cryptographic Coprocessor Feature,
there are two PKA master keys; the Signature Master Key (SMK) and the RSA Key
Management Master Key (KMMK). The SMK protects PKA private keys used only in
digital signature services. The KMMK protects PKA private keys used in digital
signature services and in the CDMF and DES DATA key distribution functions. On
the PCI Cryptographic Coprocessor, PKA keys are protected by the
Asymmetric-Keys Master Key (ASYM-MK).

© Copyright IBM Corp. 1997, 2002 47

The ASYM-MK on the PCI Cryptographic Coprocessor is a triple-length key used to
encipher and decipher PKA keys. In order for the PCI Cryptographic Coprocessor to
function, the hash pattern of the ASYM-MK must match the hash pattern of the
SMK on the Cryptographic Coprocessor Feature. The ICSF administrator installs
the PKA master keys on the Cryptographic Coprocessor Feature and the ASYM-MK
on the PCI Cryptographic Coprocessor by using either the pass phrase initialization
routine, the Clear Master Key Entry panels, or the optional Trusted Key Entry (TKE)
workstation.

Before services are enabled on the PCI Cryptographic Coprocessor, the following
conditions must be met:

v The Symmetric-Keys Master Key (SYM-MK) must be installed on the PCI
Cryptographic Coprocessor. It must match the Cryptographic Coprocessor
Feature DES master key and match the master key that the CKDS was
enciphered with.

v The PKDS is required for OS/390 V2 R9 ICSF and above.

v The PKA master keys (SMK and KMMK) on the Cryptographic Coprocessor
Feature must be installed and valid.

v The ASYM-MK PKA master key on the PCI Cryptographic Coprocessor must be
installed and valid.

v The hash pattern of the ASYM-MK on the PCI Cryptographic Coprocessor must
match the hash pattern of the SMK on the Cryptographic Coprocessor Feature.

On the Cryptographic Coprocessor Feature, operational private keys are protected
under two layers of DES encryption. They are encrypted under an Object Protection
Key (OPK) that in turn is encrypted under the SMK or KMMK. You dynamically
generate the OPK for each private key at import time. ICSF provides a public key
data set (PKDS) for the storage of application PKA keys. Although you cannot
change PKA master keys dynamically, the PKA Key Token Change callable service
can be executed to change a private PKA token (RSA or DSS) from encryption
under the old ASYM-MK to encryption under the current ASYM-MK. This service
requires a PCI Cryptographic Coprocessor and PKA callable services must be
enabled. Private tokens encrypted under the KMMK will only be reenciphered if the
KMMK was equal to the SMK. Private tokens in the PKDS are reenciphered after
the SMK and ASYM-MK keys are changed by executing the Reencipher PKDS
panel option. The reenciphered PKDS is then activated through the Activate PKDS
panel option.

PKA Callable Services
The Cryptographic Coprocessor Feature available on S/390 Enterprise Servers, the
S/390 Multiprise, and the IBM Eserver zSeries provides RSA and DSS digital
signature functions, key management functions, and DES and CDMF key
distribution functions. The S/390 G5 Enterprise Server, S/390 G6 Enterprise Server,
and the IBM Eserver zSeries provide the ability to generate RSA keys on the PCI
Cryptographic Coprocessor. ICSF provides application programming interfaces to
these functions through callable services. The following PKA callable services
perform cryptographic functions:

v PKA key generate

v PKA key import

v PKA key token build

v PKA key token change

v PKA public key extract

48 z/OS V1R3.0 ICSF Application Programmer’s Guide

v PKDS record create

v PKDS record delete

v PKDS record read

v PKDS record write

Callable Services Supporting Digital Signatures
ICSF provides the following services that support digital signatures.

Digital Signature Generate Callable Service
This service generates a digital signature. This service may use either type. It
supports the following methods:
v ANSI X9.30 (DSS)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The input text must have been previously hashed using the one-way hash generate
callable service or the MDC generation service.

Digital Signature Verify Callable Service
This service verifies a digital signature using a PKA public key. (There are two types
of PKA public key tokens: RSA and DSS. This service can use either type.) It
supports the following methods:
v ANSI X9.30 (DSS)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The text that is input to this service must be previously hashed using the one-way
hash generate callable service or the MDC generation service.

Callable Services for PKA Key Management
ICSF provides the following services for PKA key management.

PKA Key Generate Callable Service
This service generates a PKA internal token for use with the DSS algorithm in
digital signature services. You can then use the PKA public key extract callable
service to extract a DSS public key token from the internal key token. This service
also supports the generation of RSA keys on the PCI Cryptographic Coprocessor
for use on the PCI Cryptographic Coprocessor.

Input to the PKA key generate callable service is either a skeleton key token
created by the PKA key token build callable service or a valid key token. Upon
examination of the input skeleton key token, the PKA key generate service routes
the key generation request as follows:

v If the skeleton is for a DSS key token, ICSF routes the request to a
Cryptographic Coprocessor Feature.

v If the skeleton is for an RSA key, ICSF routes the request to any available PCI
Cryptographic Coprocessor.

v If the skeleton is for a retained RSA key, ICSF routes the request to a PCI
Cryptographic Coprocessor where the key is generated and retained for
additional security.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 49

PKA Key Import Callable Service
This service imports a PKA private key, which may be RSA or DSS.

The key token to import can be in the clear or encrypted. The PKA key token build
utility creates a clear PKA key token. The PKA key generate callable service
generates either a clear or an encrypted PKA key token.

PKA Key Token Build Callable Service
The PKA key token build callable service is a utility you can use to create an
external PKA key token containing an unenciphered private RSA or DSS key. You
can supply this token as input to the PKA key import callable service to obtain an
operational internal token containing an enciphered private key. You can also use
this service to input a clear unenciphered public RSA or DSS key and return the
public key in a token format that other PKA services can use directly.

Use this service to build skeleton key tokens for input to the PKA key generate
callable service for creation of RSA keys on the PCI Cryptographic Coprocessor.

PKA Key Token Change Callable Service
The PKA key token change callable service is a utility you can use to change PKA
key tokens (RSA and DSS) from encipherment with the old PCI Cryptographic
Coprocessor asymmetric-keys master key to encipherment with the current PCI
Cryptographic Coprocessor asymmetric-keys master key. This callable service only
changes private internal tokens. An active PCI Cryptographic Coprocessor is
required and PKA callable services must be enabled.

PKA Public Key Extract Callable Service
This service extracts a PKA public key token from a PKA internal (operational) or
external (importable) private key token. It performs no cryptographic verification of
the PKA private key token.

Callable Services to Update The Public Key Data Set (PKDS)
The Public Key Data Set (PKDS) is a repository for RSA and DSS public and
private keys. An application can store keys in the PKDS and refer to them by label
when using any of the callable services which accept public key tokens as input.
The PKDS update callable services provide support for creating and writing records
to the PKDS and reading and deleting records from the PKDS.

PKDS Record Create Callable Service
This service accepts an RSA or DSS private key token in either external or internal
format, or an RSA or DSS public key token and writes a new record to the PKDS.
An application can create a null token in the PKDS by specifying a token length of
zero. The key label must be unique and the caller must be in task mode and cannot
be in SRB mode.

PKDS Record Delete Callable Service
This service deletes a record from the PKDS. An application can specify that the
entire record be deleted, or that only the contents of the record be deleted. If only
the contents of the record are deleted, the record will still exist in the PKDS but will
contain only binary zeros. The key label must be unique and the caller must be in
task mode and cannot be in SRB mode.

Note: Retained keys cannot be deleted from the PKDS with this service. See
“Retained Key Delete (CSNDRKD)” on page 299 for information on deleting
retained keys.

50 z/OS V1R3.0 ICSF Application Programmer’s Guide

PKDS Record Read Callable Service
This service reads a record from the PKDS and returns the contents of that record
to the caller. The key label must be unique and the caller must be in task mode and
cannot be in SRB mode.

PKDS Record Write Callable Service
This service accepts an RSA or DSS private key token in either external or internal
format, or an RSA or DSS public key token and writes over an existing record in the
PKDS. An application can check the PKDS for a null record with the label provided
and overwrite this record if it does exist. Alternatively, an application can specify to
overwrite a record regardless of the contents of the record. The caller must be in
task mode and cannot be in SRB mode.

Note: Retained keys cannot be written to the PKDS with the PKDS Record Write
service, nor can a retained key record in the PKDS be overwritten with this
service.

Callable Services for Working with Retained Private Keys
Private keys can be generated, retained, and used within the secure boundary of a
PCI Cryptographic Coprocessor. Retained keys are generated by the PKA Key
Generate (CSNDPKG) callable service. The private key values of retained keys
never appear in any form outside the secure boundary. All retained keys have an
entry in the PKDS that identifies the PCI Cryptographic Coprocessor where the
retained private key is stored. ICSF provides the following callable services to list
and delete retained private keys.

In the following situations, the PCI Cryptographic Coprocessor clears the master
key registers so that the master key values are not disclosed.

v If the PCI Cryptographic Coprocessor detects tampering (the intrusion latch is
tripped), ALL installation data is cleared: master keys, retained keys for all
domains, as well as roles and profiles.

v If the PCI Cryptographic Coprocessor detects tampering (the secure boundary of
the card is compromised), it self-destructs and can no longer be used.

v If you issue a command from the TKE workstation to zeroize a domain

This command zeroizes the data specific to a domain: master keys and retained
keys.

v If you issue a command from the Support Element panels to zeroize all domains.

This command zeroizes ALL installation data: master keys, retained keys and
access control roles and profiles.

Retained Key Delete Callable Service
The retained key delete callable service deletes a key that has been retained within
a PCI Cryptographic Coprocessor and also deletes the record containing the key
token from the PKDS.

Retained Key List Callable Service
The retained key list callable service lists the key labels of private keys that are
retained within the boundaries of PCI Cryptographic Coprocessors installed on your
server.

Callable Services for SET Secure Electronic Transaction
SET is an industry-wide open standard for securing bankcard transactions over
open networks. The SET protocol addresses the payment phase of a transaction
from the individual, to the merchant, to the acquirer (the merchant’s current

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 51

bankcard processor). It can be used to help ensure the privacy and integrity of real
time bankcard payments over the Internet. In addition, with SET in place, everyone
in the payment process knows who everyone else is. The card holder, the
merchant, and the acquirer can be fully authenticated because the core protocol of
SET is based on digital certificates. Each participant in the payment transaction
holds a certificate that validates his or her identity. The public key infrastructure
allows these digital certificates to be exchanged, checked, and validated for every
transaction made over the Internet. The mechanics of this operation are transparent
to the application.

Under the SET protocol, every online purchase must be accompanied by a digital
certificate which identifies the card-holder to the merchant. The buyer’s digital
certificate serves as an electronic representation of the buyer’s credit card but does
not actually show the credit card number to the merchant. Once the merchant’s
SET application authenticates the buyer’s identity, it then decrypts the order
information, processes the order, and forwards the still-encrypted payment
information to the acquirer for processing. The acquirer’s SET application
authenticates the buyer’s credit card information, identifies the merchant, and
arranges settlement. With SET, the Internet becomes a safer, more secure
environment for the use of payment cards.

ICSF provides the following callable services that can be used in developing SET
applications that make use of the S/390 and IBM Eserver zSeries cryptographic
hardware at the merchant and acquirer payment gateway.

SET Block Compose Callable Service
The SET Block Compose callable service performs DES encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

SET Block Decompose Callable Service
The SET Block Decompose callable service decrypts both the RSA-encrypted and
the DES-encrypted data.

PKA Key Tokens
PKA key tokens contain RSA or DSS private or public keys. Although DES tokens
are 64 bytes, PKA tokens are variable length because they contain either RSA or
DSS key values, which are variable in length. Consequently, length parameters
precede all PKA token parameters. The maximum allowed size is 2500 bytes. PKA
key tokens consist of a token header, any required sections, and any optional
sections. Optional sections depend on the token type. PKA key tokens can be
public or private, and private key tokens can be internal or external. Therefore,
there are three basic types of tokens, each of which can contain either RSA or DSS
information:
v A public key token
v A private external key token
v A private internal key token

Public key tokens contain only the public key. Private key tokens contain the public
and private key pair. Table 6 on page 53 summarizes the sections in each type of
token.

52 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 6. Summary of PKA Key Token Sections

Section
Public External Key
Token

Private External Key
Token

Private Internal Key
Token

Header X X X

RSA or DSS private key information X X

RSA or DSS public key information X X X

Key name (optional) X X

Internal information X

As with DES key tokens, the first byte of a PKA key token contains the token
identifier which indicates the type of token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key. An external key token is in importable key form. It can be sent
on the link.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the PKA master key and ready for internal use. An
internal key token is in operational key form. A PKA private key token must be in
operational form for ICSF to use it. (PKA public key tokens are used directly in the
external form.)

Formats for public and private external and internal RSA and DSS key tokens begin
in “Format of the RSA Public Key Token” on page 368.

PKA Key Management
You can also generate PKA keys in several ways.

v Using the ICSF PKA key generate callable service.

v Using the Transaction Security System PKA key generate verb, or a comparable
product from another vendor.

If you have a S/390 G5 Enterprise Server, or higher, with a PCI Cryptographic
Coprocessor, you can use the ICSF PKA key generate callable service to generate

External encrypted
PKA token

PKA Key Import

Clear Key Values

PKA Key Token
Build Service

External unencrypted
PKA token

TSS Skeleton Key Token

PKA Key Generate
Service

Clear external
PKA token

Internal PKA
token

Figure 2. PKA Key Management

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 53

internal and external PKA tokens. You can also generate RSA keys on another
system. To input a clear RSA key to ICSF, create the token with the PKA key token
build callable service and import it using the PKA key import callable service. To
input an encrypted RSA key, generate the key on the Transaction Security System
and import it using the PKA key import callable service.

In either case, use the PKA key token build callable service to create a skeleton key
token as input (see “PKA Key Token Build (CSNDPKB)” on page 279).

You can generate DSS keys on another system or on ICSF. You need to supply
DSS network quantities to the PKA key generate callable service. If you generate
DSS keys on another system, you can import them the same way as RSA keys. If
you generate a DSS key on ICSF, you can never export it. You can use it on
another ICSF host only if the same PKA master keys are installed on both systems.

The PKA key import callable service uses the clear token from the PKA key token
build service or a clear or encrypted token from the Transaction Security System to
securely import the key token into operational form for ICSF to use. ICSF does not
permit the export of the imported PKA key.

The PKA public key extract callable service builds a public key token from a private
key token.

Application RSA and DSS public and private keys can be stored in the public key
data set (PKDS), a VSAM data set.

Invocation Requirements
The following services have the restriction: The caller must be in task mode, not
SRB mode. For all of these, the caller can be in cross-memory mode.

v PKA key import

v Digital signature generate

v Digital signature verify

v Symmetric key export

v Symmetric key import

v Symmetric key generate

v Retained key list

v Retained key delete

v PKA key generate

v SET block compose

v SET block decompose

v PKA encrypt

v PKA decrypt

Security and Integrity of the Token
PKA private key tokens may optionally have a 64-byte private_key_name field. If
private_key_name exists, ICSF uses RACHECK to verify it before using the token
in a callable service. For additional security, the processor also validates the entire
private key token.

54 z/OS V1R3.0 ICSF Application Programmer’s Guide

Key Identifier for PKA Key Token
A key identifier for a PKA key token is a variable length (maximum allowed size is
2500 bytes) area that contains one of the following:

v Key label identifies keys that are in the PKDS. Ask your ICSF administrator for
the key labels that you can use.

v Key token can be either an internal key token, an external key token, or a null
key token. Key tokens are generated by an application (for example, using the
PKA key generate callable service), or received from another system that can
produce external key tokens.

An internal key token can be used only on ICSF, because a PKA master key
encrypts the key value. Internal key tokens contain keys in operational form only.

An external key token can be exchanged with other systems because a
transport key that is shared with the other system encrypts the key value.
External key tokens contain keys in either exportable or importable form.

A null key token consists of 8 bytes of binary zeros. The PKDS Record Create
service can be used to write a null token to the PKDS. This PKDS record can
subsequently be identified as the target token for the PKA key import or PKA key
generate service.

The term key identifier is used when a parameter could be one of the above items
and to indicate that different inputs are possible. For example, you may want to
specify a specific parameter as either an internal key token or a key label. The key
label is, in effect, an indirect reference to a stored internal key token.

Key Label
If the first byte of the key identifier is greater than X'40', the field is considered to be
holding a key label. The contents of a key label are interpreted as a pointer to a
public key data set (PKDS) key entry. The key label is an indirect reference to an
internal key token.

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the key record create callable service which enforces
the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has the following form:

Offset Length Data
00-63 64 Key label name

Key Token
A key token is a variable length (maximum allowed size is 2500 bytes) field
composed of key value and control information. PKA keys can be either public or
private RSA or DSS keys. Each key token can be either an internal key token (the
first byte of the key identifier is X'1F'), an external key token (the first byte of the
key identifier is X'1E'), or a null PKA private key token (the first byte of the key
identifier is X'00'). The following is a list of private key section identifiers for internal
and external private RSA key tokens:

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 55

Table 7. Internal and External Private RSA Key Token Section Identifiers

Key token Section identifier

RSA Private Key Token 1024 Modulus-Exponent External Form X'02'

RSA Private Key Token 2048 Chinese Remainder Theorem
External Form

X'08'

RSA Private Key Token 1024 Modulus-Exponent Internal Form
(Cryptographic Coprocessor Feature)

X'02'

RSA Private Key Token 1024 Modulus-Exponent Internal Form
(PCI Cryptographic Coprocessor)

X'06'

RSA Private Key Token 2048 Chinese Remainder Theorem
Internal Form

X'08'

See Appendix B, “Key Token Formats” on page 365 for descriptions of the PKA key
tokens.

An internal key token is a token that can be used only on the ICSF system that
created it (or another ICSF system with the same PKA master key). It contains a
key that is encrypted under the PKA master key.

An application obtains an internal key token by using one of the callable services
such as those listed below. The callable services are described in detail in
Chapter 9, “Managing PKA Cryptographic Keys”.
v PKA key generate

The PKA Key Token Change callable service can reecipher private internal tokens
from encryption under the old ASYM-MK to encryption under the current ASYM-MK.
PKDS Reencipher/Activate options are available to reencipher RSA and DSS
internal tokens in the PKDS after the SMK/ASYM-MK keys are changed.

PKA master keys may not be changed dynamically.

For debugging information, see Appendix B, “Key Token Formats” for the format of
an internal key token.

If the first byte of the key identifier is X'1E', the key identifier is interpreted as an
external key token. An external PKA key token contains key (possibly encrypted)
and control information. By using the external key token, you can exchange keys
between systems.

An application obtains the external key token by using one of the callable services
such as those listed below. They are described in detail in Chapter 9, “Managing
PKA Cryptographic Keys”.
v PKA public key extract
v PKA key import
v PKA key token build
v PKA key generate

For debugging information, see Appendix B, “Key Token Formats” for the format of
an external key token.

If the first byte of the key identifier is X'00', the key identifier is interpreted as a null
key token. Use the null key token to produce external key tokens.

56 z/OS V1R3.0 ICSF Application Programmer’s Guide

For debugging information, see Appendix B, “Key Token Formats” for the format of
a null key token.

The Transaction Security System and ICSF Portability
The Transaction Security System PKA verbs from releases prior to 1996 can run
only on the Transaction Security System. The PKA96 release of the Transaction
Security System PKA verbs generally runs on ICSF without change. As with DES
cryptography, you cannot interchange internal PKA tokens but can interchange
external tokens.

Summary of the PKA Callable Services
Table 8 lists the PKA callable services, described in this book, and their
corresponding verbs. (The PKA services start with CSNDxxx and have
corresponding CSFxxx names.) This table also references the chapter that
describes the callable service.

Table 8. Summary of PKA Callable Services

Verb Service Name Function

Chapter 7, “Financial Services”

CSNDSBC SET block compose Composes the RSA-OAEP block and the DES-encrypted
block in support of the SET protocol.

CSNDSBD SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted data back
to the caller.

Chapter 8, “Using Digital Signatures”

CSNDDSG Digital signature generate Generates a digital signature using a PKA private key
supporting RSA and DSS algorithms.

CSNDDSV Digital signature verify Verifies a digital signature using a PKA public key
supporting RSA and DSS algorithms.

Chapter 9, “Managing PKA Cryptographic Keys”

CSNDPKG PKA key generate Generates a DSS internal token for use in digital
signature services and RSA keys for use on the PCI
Cryptographic Coprocessor.

CSNDPKI PKA key import Imports a PKA key token containing either a clear PKA
key or a PKA key enciphered under a limited authority
IMP-PKA KEK.

CSNDPKB PKA key token build Creates an external PKA key token containing a clear
private RSA or DSS key. Using this token as input to the
PKA key import callable service returns an operational
internal token containing an enciphered private key.
Using CSNDPKB on a clear public RSA or DSS key,
returns the public key in a token format that other PKA
services can directly use. CSNDPKB can also be used
to create a skeleton token for input to the PKA Key
Generate service for the generation of an internal DSS
or RSA key token.

CSNDKTC PKA key token change Changes PKA key tokens (RSA and DSS) from
encipherment with the old PCI Cryptographic
Coprocessor asymmetric-keys master key to
encipherment with the current PCI Cryptographic
Coprocessor asymmetric-keys master key. This callable
service only changes private internal tokens.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 57

Table 8. Summary of PKA Callable Services (continued)

Verb Service Name Function

CSNDPKX PKA public key extract Extracts a PKA public key token from a supplied PKA
internal or external private key token. Performs no
cryptographic verification of the PKA private token.

CSNDKRC PKDS record create Writes a new record to the PKDS.

CSNDKRD PKDS record delete Delete a record from the PKDS.

CSNDKRR PKDS record read Read a record from the PKDS and return the contents of
that record.

CSNDKRW PKDS record write Write over an existing record in the PKDS.

CSNDRKL Retained key list Lists key labels of keys that have been retained within all
currently active PCI Cryptographic Coprocessors.

CSNDRKD Retained key delete Deletes a key that has been retained within the PCI
Cryptographic Coprocessor.

58 z/OS V1R3.0 ICSF Application Programmer’s Guide

Part 2. CCA Callable Services

This part of the book introduces DES and PKA callable services.

© Copyright IBM Corp. 1997, 2002 59

60 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 4. Managing DES Cryptographic Keys

This chapter describes the callable services that generate and maintain
cryptographic keys.

Using ICSF, you can generate keys using either the key generator utility program or
the key generate callable service. ICSF provides a number of callable services to
assist you in managing and distributing keys and maintaining the cryptographic key
data set (CKDS).

This chapter describes the following callable services:
v “Clear Key Import (CSNBCKI)”
v “Control Vector Generate (CSNBCVG)” on page 63
v “Control Vector Translate (CSNBCVT)” on page 65
v “Cryptographic Variable Encipher (CSNBCVE)” on page 68
v “Data Key Export (CSNBDKX)” on page 70
v “Data Key Import (CSNBDKM)” on page 72
v “Diversified Key Generate (CSNBDKG)” on page 74
v “Key Export (CSNBKEX)” on page 77
v “Key Generate (CSNBKGN)” on page 82
v “Key Import (CSNBKIM)” on page 92
v “Key Part Import (CSNBKPI)” on page 97
v “Key Record Create (CSNBKRC)” on page 100
v “Key Record Delete (CSNBKRD)” on page 101
v “Key Record Read (CSNBKRR)” on page 102
v “Key Record Write (CSNBKRW)” on page 104
v “Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)” on page 105
v “Key Token Build (CSNBKTB)” on page 109
v “Key Translate (CSNBKTR)” on page 118
v “Multiple Clear Key Import (CSNBCKM)” on page 120
v “Multiple Secure Key Import (CSNBSKM)” on page 122
v “PKA Decrypt (CSNDPKD)” on page 126
v “PKA Encrypt (CSNDPKE)” on page 130
v “Prohibit Export (CSNBPEX)” on page 133
v “Prohibit Export Extended (CSNBPEXX)” on page 134
v “Random Number Generate (CSNBRNG)” on page 135
v “Secure Key Import (CSNBSKI)” on page 137
v “Symmetric Key Export (CSNDSYX)” on page 140
v “Symmetric Key Generate (CSNDSYG)” on page 143
v “Symmetric Key Import (CSNDSYI)” on page 147
v “Transform CDMF Key (CSNBTCK)” on page 151
v “User Derived Key (CSFUDK)” on page 153

Clear Key Import (CSNBCKI)
Use the clear key import callable service to import a clear DATA key that is to be
used to encipher or decipher data. This callable service can import only DATA keys.
Clear key import accepts an 8-byte clear DATA key, enciphers it under the master
key, and returns the encrypted DATA key in operational form in an internal key
token. This service marks this internal key token CDMF or DES, according to the
system's default encryption algorithm, unless token copying overrides this.

If the clear key value does not have odd parity in the low-order bit of each byte, the
service returns a warning value in the reason_code parameter. The callable service
does not adjust the parity of the key.

© Copyright IBM Corp. 1997, 2002 61

Note: To import 16-byte or 24-byte DATA keys, use the multiple clear key import
callable service that is described in “Multiple Clear Key Import (CSNBCKM)”
on page 120.

Format

CALL CSNBCKI(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The clear_key specifies the 8-byte clear key value to import.

key_identifier

Direction: Input/Output Type: String

Clear Key Import (CSNBCKI)

62 z/OS V1R3.0 ICSF Application Programmer’s Guide

A 64-byte string that is to receive the internal key token. “Key Identifier for Key
Token” on page 7 describes the internal key token. If this parameter contains a
valid internal key token for a DATA key, clear key import propagates the data
encryption algorithm bits to the imported key token. Otherwise, this callable
service marks the key token according to the system's default algorithm.

Usage Note
This service produces an internal DATA token with a control vector which is usable
on the Cryptographic Coprocessor Feature. If a valid internal token is supplied as
input to the service in the key_identifier field, that token’s control vector will not be
used in the encryption of the clear key value.

Control Vector Generate (CSNBCVG)
The Control Vector Generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

Format

CALL CSNBCVG(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
reserved,
control_vector)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

Clear Key Import (CSNBCKI)

Chapter 4. Managing DES Cryptographic Keys 63

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: String

A string variable containing a keyword for the key type. The keyword is 8 bytes
in length, left justified, and padded on the right with space characters. It is taken
from the following list:
CIPHER DATAC IKEYXLAT OPINENC
CVARDEC DATAM IMPORTER PINGEN
CVARENC DATAMV IPINENC PINVER
CVARPINE DECIPHER KEYGENKY SECMSG
CVARXCVL DKYGENKY MAC
CVARXCVR ENCIPHER MACVER
DATA EXPORTER OKEYXLAT

Note: CLR8-ENC must be coded in rule_array when the KEYGENKY key type
is coded. When the SECMSG key_type is coded, either SMKEY or
SMPIN must be specified in the rule_array.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter.

rule_array

Direction: Input Type: Character String

Keywords that provide control information to the callable service. Each keyword
is left justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage. “Key Token Build (CSNBKTB)” on page 109
illustrates the key type and key usage keywords that can be combined in the
Control Vector Generate and Key Token Build callable services to create a
control vector. The rule array keywords are shown below.
ANY DKYL5 IBM-PIN OPEX
CLR8-ENC DKYL6 IBM-PINO OPIM
CPINENC DKYL7 IMEX PIN
CPINGEN DMAC IMIM REFORMAT
CPINGENA DMKEY IMPORT SINGLE
DALL DMPIN INBK-PIN SMKEY
DATA DMV KEY-PART SMPIN
DDATA DOUBLE KEYLN8 TRANSLAT
DEXP DPVR KEYLN16 UKPT
DIMP EPINGEN LMTD-KEK VISA-PVV
DKYL0 EPINVER MIXED XLATE
DKYL1 EXEX NO-SPEC XPORT-OK
DKYL2 EXPORT NO-XPORT
DKYL3 GBP-PIN NOOFFSET
DKYL4 GBP-PINO NOT-KEK

Control Vector Generate (CSNBCVG)

64 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: CLR8-ENC must be coded in rule_array when the KEYGENKY key type
is coded. When the SECMSG key_type is coded, either SMKEY or
SMPIN must be specified in the rule_array.

reserved

Direction: Input Type: String

The reserved parameter must be a variable of 8 bytes of X'00'.

control_vector

Direction: Output Type: String

A 16-byte string variable in application storage where the service returns the
generated control vector.

Usage Notes
SAF will be invoked to check authorization to use the Control Vector Generate
service.

See Table 22 on page 116 for an illustration of key type and key usage keywords
that can be combined in the Control Vector Generate and Key Token Build callable
services to create a control vector.

Control Vector Translate (CSNBCVT)
The Control Vector Translate callable service changes the control vector used to
encipher an external key.

ICSF routes the Control Vector Translate request to a PCI Cryptographic
Coprocessor for processing. If no PCI Cryptographic Coprocessor is online, the
request fails. See “Changing Control Vectors with the Control Vector Translate
Callable Service” on page 393 for additional information about this service.

Format

CALL CSNBCVT(
return_code,
reason_code,
exit_data_length,
exit_data,
KEK_key_identifier,
source_key_token,
array_key_left,
mask_array_left,
array_key_right,
mask_array_right,
rule_array_count,
rule_array,
target_key_token)

Control Vector Generate (CSNBCVG)

Chapter 4. Managing DES Cryptographic Keys 65

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

KEK_key_identifier

Direction: Input/Output Type: String

The 64-byte string variable containing an internal key token or the key label of
an internal key token record containing the key-encrypting key. The control
vector in the internal key token must specify the key type of IMPORTER,
EXPORTER, IKEYXLAT, or OKEYXLAT.

source_key_token

Direction: Input Type: String

A 64-byte string variable containing the external key token with the key and
control vector to be processed.

array_key_left

Direction: Input/Output Type: String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the left mask array. The internal key
token must contain a control vector specifying a CVARXCVL key type.

Control Vector Translate (CSNBCVT)

66 z/OS V1R3.0 ICSF Application Programmer’s Guide

mask_array_left

Direction: Input Type: String

A string of seven 8-byte elements containing the mask array enciphered under
the left array key.

array_key_right

Direction: Input/Ouput Type: String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the right mask array. The internal key
token must contain a control vector specifying a CVARXCVR key type.

mask_array_right

Direction: Input Type: String

A string of seven 8-byte elements containing the mask array enciphered under
the right array key.

rule_array_count

Direction: Input Type: Integer

An integer containing the number of elements in the rule array. The value of the
rule_array_count must be zero, one, or two for this service. If the rule array
count is zero, the default keywords ADJUST and LEFT are used.

rule_array

Direction: Input Type: Character String

The rule_array parameter is an array of keywords. The keywords are 8 bytes in
length, and must be left-justified and padded on the right with space characters.
The rule_array keywords are shown below.

Table 9. Keywords for Control Vector Translate

Keyword Meaning

Parity Adjustment Rule (optional)

ADJUST Ensures that all target key bytes have odd parity. This is
the default.

NOADJUST Prevents the parity of the target being altered.

Key-portion Rule (optional)

BOTH Causes both halves of a 16-byte source key to be
processed with the result placed into corresponding halves
of the target key. When you use the BOTH keyword, the
mask array must be able to validate the translation of both
halves.

LEFT Causes an 8-byte source key, or the left half of a 16-byte
source key, to be processed with the result placed into
both halves of the target key. This is the default.

Control Vector Translate (CSNBCVT)

Chapter 4. Managing DES Cryptographic Keys 67

Table 9. Keywords for Control Vector Translate (continued)

Keyword Meaning

RIGHT Causes the right half of a 16-byte source key to be
processed with the result placed into the right half of the
target key. The left half is copied unchanged (still
enciphered) from the source key.

SINGLE Causes the left half of the source key to be processed
with the result placed into the left half of the target key
token. The right half of the target key is unchanged.

target_key_token

Direction: Input/Output Type: String

A 64-byte string variable containing an external key token with the new control
vector. This key token contains the key halves with the new control vector.

Restriction
The caller must be in task mode, not in SRB mode.

Usage Notes
SAF will be invoked to check authorization to use the Control Vector Translate
service and any key labels specified as input.

If KEK_key_identifier is a label of an IMPORTER or EXPORTER key, the label must
be unique in the CKDS.

Cryptographic Variable Encipher (CSNBCVE)
The Cryptographic Variable Encipher callable service uses a CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use
this service to prepare a mask array for the Control Vector Translate service. The
plaintext must be a multiple of eight bytes in length.

ICSF routes the cryptographic variable encipher request to a PCI Cryptographic
Coprocessor for processing. If no PCI Cryptographic Coprocessor is online, the
request fails.

Format

CALL CSNBCVE(
return_code,
reason_code,
exit_data_length,
exit_data,
c-variable_encrypting_key_identifier,
text_length,
plaintext,
initialization_vector,
ciphertext)

Control Vector Translate (CSNBCVT)

68 z/OS V1R3.0 ICSF Application Programmer’s Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

c-variable_encrypting_key_identifier

Direction: Input/Output Type: String

The 64-byte string variable containing an internal key or a key label of an
internal key token record in the CKDS. The internal key must contain a control
vector that specifies a CVARENC key type.

text_length

Direction: Input Type: Integer

An integer variable containing the length of the plaintext and the returned
ciphertext.

plaintext

Direction: Input Type: String

A string of length 8 to 256 bytes which contains the plaintext.

Cryptographic Variable Encipher (CSNBCVE)

Chapter 4. Managing DES Cryptographic Keys 69

initialization_vector

Direction: Input Type: String

A string variable containing the 8-byte initialization vector that the service uses
in encrypting the plaintext.

ciphertext

Direction: Output Type: String

The field which receives the ciphertext. The length of this field is the same as
the length of the plaintext.

Restrictions
v The text length must be a multiple of 8 bytes.

v The maximum length of text that the security server can process is 256 bytes.

v The caller must be in task mode, not in SRB mode.

Usage Note
SAF will be invoked to check authorization to use the Cryptographic Variable
Encipher service and the key label if specified in the
c-variable_encrypting_key_identifier parameter.

Data Key Export (CSNBDKX)
Use the data key export callable service to reencipher a data-encrypting key (key
type of DATA only) from encryption under the master key to encryption under an
exporter key-encrypting key. The reenciphered key is in a form suitable for export to
another system.

ICSF examines the data encryption algorithm bits on the exporter key-encrypting
key and DATA key for consistency. It does not export a CDMF key under a
DES-marked key-encrypting key or a DES key under a CDMF-marked
key-encrypting key. These checks are not enforced when the service is executed on
a PCI Cryptographic Coprocessor. ICSF does not propagate the data encryption
marking on the operational key to the external token.

The data key export service generates a key token with the same key length as the
input token’s key.

ICSF routes the Data Key Export request to a PCI Cryptographic Coprocessor if the
control vector of the exporter_key_identifier cannot be processed on the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails.

Cryptographic Variable Encipher (CSNBCVE)

70 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format

CALL CSNBDKX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_identifier

Direction: Input/Output Type: String

A 64-byte string for an internal key token or label that contains a
data-encrypting key to be reenciphered. The data-encrypting key is encrypted
under the master key.

exporter_key_identifier

Direction: Input/Output Type: String

Data Key Export (CSNBDKX)

Chapter 4. Managing DES Cryptographic Keys 71

A 64-byte string for an internal key token or key label that contains the exporter
key_encrypting key. The data-encrypting key above will be encrypted under this
exporter key_encrypting key.

target_key_identifier

Direction: Input/Output Type: String

A 64-byte field that is to receive the external key token, which contains the
reenciphered key that has been exported. The reenciphered key can now be
exchanged with another cryptographic system.

Usage Note
You cannot export a CDMF key under a DES-marked KEK or a DES key under a
CDMF-marked KEK. The service fails with a return code of 8 and reason code of
10120. These checks are not enforced when the service is executed on a PCI
Cryptographic Coprocessor.

Data Key Import (CSNBDKM)
Use the data key import callable service to import an encrypted source DES
single-length or double-length DATA key and create or update a target internal key
token with the master key enciphered source key. ICSF routes the Data Key Import
request to a PCI Cryptographic Coprocessor for processing. If no PCI Cryptographic
Coprocessor is online, the request fails.

Format

CALL CSNBDKM(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

Data Key Export (CSNBDKX)

72 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_token

Direction: Input Type: String

A 64-byte string variable containing the source key to be imported. The source
key must be an external key. The external key token must indicate that a
control vector is present; however, the control vector is usually valued at zero. A
double-length key that should result in a default DATA control vector must be
specified in a version X'01' external key token. Otherwise, both single and
double-length keys are presented in a version X'00' key token. Alternatively, the
encrypted data key can be provided at offset 16 in an otherwise all X'00' key
token. The service will process this token format as a DATA key encrypted by
the importer key and a null (all zero) control vector.

importer_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the (IMPORTER) transport key or key label
of the transport key used to decipher the source key.

target_key_identifier

Direction: Output Type: String

A 64-byte string variable containing a null key token or an internal key token.
The key token receives the imported key.

Restriction
The caller must be in task mode, not in SRB mode.

Usage Notes
SAF will be invoked to check authorization to use the Data Key Import service and
the label of the importer_key_identifier.

This service does not adjust the key parity of the source key.

CDMF/DES token markings will be ignored.

Data Key Import (CSNBDKM)

Chapter 4. Managing DES Cryptographic Keys 73

Diversified Key Generate (CSNBDKG)
The diversified key generate service generates a key based on the key-generating
key, the processing method, and the parameter supplied. The control vector of the
key-generating key also determines the type of target key that can be generated.

To use this service, specify the following:

v The rule array keyword to select the diversification process.

v The operational key-generating key from which the diversified keys are
generated. The control vector associated with this key restricts the use of this
key to the key generation process. This control vector also restricts the type of
key that can be generated.

v The data and length of data used in the diversification process.

v The generated-key may be an internal token or a skeleton token containing the
desired CV of the generated-key. The generated key CV must be one that is
permitted by the processing method and the key-generating key. The
generated-key will be returned in this parameter.

This service generates diversified keys as follows:

v Determines if it can support the process specified in rule array.

v Recovers the key-generating key and checks the key-generating key class and
the specified usage of the key-generating key.

v Determines that the control vector in the generated-key token is permissible for
the specified processing method.

v Determines that the control vector in the generated-key token is permissible by
the control vector of the key-generating key.

v Determines the required data length from the processing method and the
generated-key CV. Validates the data_length.

v Generates the key appropriate to the specific processing method. Adjusts parity
of the key to odd. Creates the internal token and returns the generated
diversified key.

Format

CALL CSNBDKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
generating_key_identifier,
data_length,
data,
key_identifier,
generated_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

Diversified Key Generate (CSNBDKG)

74 z/OS V1R3.0 ICSF Application Programmer’s Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The only
valid value is 1.

rule_array

Direction: Input Type: String

The keyword that provides control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keyword is left justified and padded on the right with blanks.

Table 10. Rule Array Keywords for Diversified Key Generate

Keyword Meaning

Processing Method for generating or updating diversified keys (required)

CLR8-ENC Specifies that 8-bytes of clear data shall be multiply
encrypted with the generating key. The
generating_key_identifier must be a KEYGENKY key
type with bit 19 of the control vector set to 1. The
control vector in generated_key_identifier must specify
a single-length key. The key type may be DATA, MAC,
or MACVER.
Note: CIPHER class keys are not supported.

Diversified Key Generate (CSNBDKG)

Chapter 4. Managing DES Cryptographic Keys 75

Table 10. Rule Array Keywords for Diversified Key Generate (continued)

Keyword Meaning

TDES-DEC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key,
then 8-bytes of data is TDES decrypted under the
generating_key_identifier. If the
generated_key_identifier specifies a double length key,
then 16-bytes of data is TDES ECB mode decrypted
under the generating_key_identifier. No formating of
data is done before encryption. The
generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired
generated key.

TDES-ENC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key,
then 8-bytes of data is TDES encrypted under the
generating_key_identifier. If the
generated_key_identifier specifies a double length key,
then 16-bytes of data is TDES ECB mode encrypted
under the generating_key_identifier. No formatting of
data is done before encryption. The
generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired
generated key. The generated_key_identifier may be a
single or double length key with a CV that is permitted
by the generating_key_identifier.

Processing Method for updating a diversified key

SESS-XOR Specifies the VISA method for session key generation.
Data supplied may be 8 or 16 bytes of data depending
on whether the generating_key_identifier is a single or
double length key. The 8 or 16 bytes of data is XORed
with the clear value of the generating_key_identifier.
The generated_key_identifier has the same control
vector as the generating_key_identifier. The
generating_key_identifier may be DATA/DATAC,
MAC/DATAM or MACVER/DATAMV key types.

generating_key_identifier

Direction: Input/Output Type: String

The label or internal token of a key generating key. The type of key-generating
key depends on the processing method.

data_length

Direction: Input Type: Integer

The length of the data parameter that follows. Length depends on the
processing method and the generated key.

data

Direction: Input Type: String

Diversified Key Generate (CSNBDKG)

76 z/OS V1R3.0 ICSF Application Programmer’s Guide

Data input to the diversified key or session key generation process. Data
depends on the processing method and the generated_key_identifier.

key_identifier

Direction: Input/Output Type: String

This parameter is currently not used. It must be a 64-byte null token.

generated_key_identifier

Direction: Input/Output Type: String

The internal token of an operational key, a skeleton token containing the control
vector of the key to be generated, or a null token. A null token can be supplied
if the generated_key_identifier will be a DKYGENKY with a CV derived from the
generating_key_identifier. A skeleton token or internal token is required when
generated_key_identifier will not be a DKYGENKY key type or the processing
method is not SESS-XOR. For SESS-XOR, this must be a null token. On
output, this parameter contains the generated key.

Restrictions
v This service requires at least one PCI Cryptographic Coprocessor to be installed

and active.

v The caller must be in task mode and not in SRB mode.

Usage Notes
SAF will be invoked to check authorization to use the Diversified Key Generate
service and any key labels specified as input.

Key Export (CSNBKEX)
Use the key export callable service to reencipher any type of key (except an AKEK
or an IMP-PKA) from encryption under a master key variant to encryption under the
same variant of an exporter key-encrypting key. The reenciphered key can be
exported to another system.

ICSF examines the data encryption algorithm bits on the exporter key-encrypting
key and the key being exported for consistency. It does not export a CDMF key
under a DES-marked key-encrypting key or a DES key under a CDMF-marked
key-encrypting key. These checks are not enforced when the service is executed on
a PCI Cryptographic Coprocessor. ICSF does not propagate the data encryption
marking on the operational key to the external token.

If the key to be exported is a DATA key, the key export service generates a key
token with the same key length as the input token’s key.

This service supports the no-export bit that the prohibit export service sets in the
internal token.

ICSF routes the Key Export request to a PCI Cryptographic Coprocessor if the
control vector of the exporter_key_identifier cannot be processed on the
Cryptographic Coprocessor Feature. The service will also be routed to a PCI
Cryptographic Coprocessor if the key type specified is one of the following:

Diversified Key Generate (CSNBDKG)

Chapter 4. Managing DES Cryptographic Keys 77

DECIPHER, ENCIPHER, IKEYXLAT, OKEYXLAT or CIPHER. If no PCI
Cryptographic Coprocessor is online in this case, the request fails. If the key type is
MACD, the key export service will be processed on a Cryptographic Coprocessor
Feature. When TOKEN is specified for the key_type, it is also routed to the PCI
Cryptographic Coprocessor. If no PCI Cryptographic Coprocessor is available, and
TOKEN was specified, the CV is checked to determine if it can be processed on the
Cryptographic Coprocessor Feature. If it can, the service is executed. If not, the
request fails.

Format

CALL CSNBKEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: Character string

Key Export (CSNBKEX)

78 z/OS V1R3.0 ICSF Application Programmer’s Guide

The parameter is an 8-byte field that contains either a key type value or the
keyword TOKEN. The keyword is left-justified and padded on the right with
blanks. The key types you can specify are listed in Table 11.

For a double-length MAC key with a key type of DATAM, the service uses the
data compatibility control vector to create an external token. For a double-length
MAC key with a key type of MACD, the service uses the single-length control
vector for both the left and right half of the key to create an external token
(MAC { MAC). For a table of control vectors, refer to “Control Vector Table” on
page 383.

To export a double-length MAC generation key, use a key type of either DATAM
or TOKEN. To export a double-length MAC verification key, use a key type of
either DATAMV or TOKEN.

If the key type is TOKEN, ICSF determines the key type from the control vector
(CV) field in the internal key token provided in the source_key_identifier
parameter. If the control vector is invalid on the Cryptographic Coprocessor
Feature, the key export request will be routed to the PCI Cryptographic
Coprocessor.

Table 11. Key Type Values for the Key Export Callable Service

Key Type Meaning

CIPHER Used only to encrypt or decrypt data. Possible key
lengths are single-, or double-length. CIPHER keys
cannot be used in the Encipher (CSNBENC) or
Decipher (CSNBDEC) callable services.

DATA Data encrypting key. Use this single-length,
double-length, or triple-length key to encipher and
decipher data.

DATAC Used to specify a DATA-class key that will perform in
the Encipher and Decipher callable services, but not
in the MAC Generate or MAC Verify callable services.
This is a double-length key.

DATAM MAC generation key. May be specified explicitly as a
key type or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a
key type or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to
reencipher text from one DATA key to another.

DECIPHER Used only to decrypt data. Possible key lengths are
single-, or double-length. DECIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher
(CSNBDEC) callable services.

ENCIPHER Used only to encrypt data. Possible key lengths are
single-, or double-length. ENCIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher
(CSNBDEC) callable services.

EXPORTER Exporter key-encrypting key. Use this double-length
key (including a DATA key) from the operational form
into exportable form.

Key Export (CSNBKEX)

Chapter 4. Managing DES Cryptographic Keys 79

Table 11. Key Type Values for the Key Export Callable Service (continued)

Key Type Meaning

IKEYXLAT Used to decrypt an input key in the Key Translate
callable service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length
key to convert a key from importable form into
operational form.

IPINENC Double-length input PIN-encrypting key. PIN blocks
received from other nodes or automatic teller machine
(ATM) terminals are encrypted under this type of key.
These encrypted PIN blocks are the input to the
Encrypted PIN translate, Encrypted PIN verify, and
Clear PIN Generate Alternate services. If an
encrypted PIN block is contained in the output of the
SET Block Decompose service, it may be encrypted
by an IPINENC key.

MAC MAC generation key. Use this single-length key to
generate a message authentication code.

MACD Double-length MAC generation and verification key.
ICSF continues to support this key type for
compatibility with ICSF/MVS Version 2 Release 1.

MACVER MAC verification key. Use this single-length key to
verify a message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate
callable service. This is a double-length key.

OPINENC Output PIN-encrypting key. Use this double-length
output key to translate PINs. The output PIN blocks
from the Encrypted PIN translate, Encrypted PIN
generate, and Clear PIN generate alternate callable
services are encrypted under this type of key. If an
encrypted PIN block is contained in the output of the
SET Block Decompose service, it may be encrypted
by an OPINENC key.

PINGEN PIN generation key. Use this double-length key to
generate PINs.

PINVER PIN verification key. Use this double-length key to
verify PINs.

source_key_identifier

Direction: Input Type: String

A 64-byte string of the internal key token that contains the key to be
reenciphered. This parameter must identify an internal key token in application
storage, or a label of an existing key in the cryptographic key data set.

If you supply TOKEN for the key_type parameter, ICSF looks at the control
vector in the internal key token and determines the key type from this
information. If you supply TOKEN for the key_type parameter and supply a
label for this parameter, the label must be unique in the cryptographic key data
set.

Key Export (CSNBKEX)

80 z/OS V1R3.0 ICSF Application Programmer’s Guide

exporter_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal key token or key label that contains the exporter
key-encrypting key. This parameter must identify an internal key token in
application storage, or a label of an existing key in the cryptographic key data
set.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector” on page 16 and the NOCV bit
is shown in Table 97 on page 365.

target_key_identifier

Direction: Input/Output Type: String

The 64-byte field external key token that contains the reenciphered key. The
reenciphered key can be exchanged with another cryptographic system.

Usage Notes
You cannot export a CDMF key under a DES-marked KEK or a DES key under a
CDMF-marked KEK. The service fails with a return code of 8 and reason code of
10120. These checks are not enforced when the service is executed on a PCI
Cryptographic Coprocessor.

This service supports the no-export bit that the key import service sets in the
internal token. (A return code of 8 and reason code of 10124 indicates a key cannot
be exported.)

For key export, you can use the following combinations of parameters:

v A valid key type in the key_type parameter and an internal key token in the
source_key_identifier parameter. The key type must be equivalent to the control
vector specified in the internal key token.

v A key_type parameter of TOKEN and an internal key token in the
source_key_identifier parameter. With key_type of TOKEN, the
source_key_identifier can also be a label. The key type is extracted from the
control vector contained in the internal key token.

v A valid key type in the key_type parameter, and a label in the
source_key_identifier parameter.

If internal key tokens are supplied in the source_key_identifier or
exporter_key_identifier parameters, the key in one or both tokens can be
reenciphered. This occurs if the master key was changed since the internal key
token was last used. The return and reason codes that indicate this do not indicate
which key was reenciphered. Therefore, assume both keys have been
reenciphered.

Key Export (CSNBKEX)

Chapter 4. Managing DES Cryptographic Keys 81

This service cannot be used to export AKEKs. Refer to “ANSI X9.17 Key Export
(CSNAKEX)” on page 319 for information on exporting AKEKs.

To use NOCV key-encrypting keys or to export double-length MAC and MACVER
keys, the NOCV-enablement keys must be installed in the CKDS.

Key Export operations which specify a NOCV key-encrypting key as the exporter
key and also specify a source or key-encrypting key which contains a control vector
not supported by the Cryptographic Coprocessor Feature will fail.

If the key type is MACD, the control vectors of the input keys must be the standard
control vectors supported by the Cryptographic Coprocessor Feature, since the key
export service will be processed on the Cryptographic Coprocessor Feature in this
case.

Key Generate (CSNBKGN)
Use the key generate callable service to generate either one or two odd parity DES
keys of any type.The keys can be single-length (8 bytes), double-length (16 bytes),
or, in the case of DATA keys, triple-length (24 bytes). The callable service does not
produce keys in clear form and all keys are returned in encrypted form. When two
keys are generated, each key has the same clear value, although this clear value is
not exposed outside the secure cryptographic feature.

ICSF routes the Key Generate request to a PCI Cryptographic Coprocessor if the
key type specified in key_type_1 or key_type_2 is not valid for the Cryptographic
Coprocessor Feature or if the control vector in a supplied token cannot be
processed on the Cryptographic Coprocessor Feature. The Key Generate request is
also routed to a PCI Cryptographic Coprocessor if a key length of SINGLE-R is
specified, or if a key form of OPIM (see note), OPOP or IMIM is specified. If no PCI
Cryptographic Coprocessor is online in this case, the request fails.

Note: OPIM is valid on the Cryptographic Coprocessor Feature for key forms
DATA/DATA, DATAM/DATAM and MAC/MAC. All other OPIM key forms are
routed to the PCI Cryptographic Coprocessor.

Format

CALL CSNBKGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_form,
key_length,
key_type_1,
key_type_2,
kek_key_identifier_1,
kek_key_identifier_2,
generated_key_identifier_1,
generated_key_identifier_2)

Parameters
return_code

Direction: Output Type: Integer

Key Export (CSNBKEX)

82 z/OS V1R3.0 ICSF Application Programmer’s Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_form

Direction: Input Type: Character string

A 4-byte keyword that defines the type of key(s) you want generated. This
parameter also specifies if each key should be returned for either operational,
importable, or exportable use. The keyword must be in a 4-byte field,
left-justified, and padded with blanks.

The first two characters refer to key_type_1. The next two characters refer to
key_type_2.

The following keywords are allowed: OP, IM, EX, OPIM, OPEX, IMEX, EXEX,
OPOP, and IMIM. See Table 12 for their meanings.

Table 12. Key Form Values for the Key Generate Callable Service

Keyword Meaning

EX One key that can be sent to another system.

EXEX A key pair; both keys to be sent elsewhere, possibly for
exporting to two different systems. The key pair has the same
clear value.

IM One key that can be locally imported. The key can later be
imported onto this system to make it operational.

IMEX A key pair to be imported; one key to be imported locally and
one key to be sent elsewhere. Both keys have the same clear
value.

Key Generate (CSNBKGN)

Chapter 4. Managing DES Cryptographic Keys 83

Table 12. Key Form Values for the Key Generate Callable Service (continued)

Keyword Meaning

IMIM A key pair to be imported; both keys to be imported locally at a
later time.

OP One operational key. The key is returned to the caller in the
key token format. Specify the OP key form when generating
AKEKs.

OPEX A key pair; one key that is operational and one key to be sent
from this system. Both keys have the same clear value.

OPIM A key pair; one key that is operational and one key to be
imported to the local system. Both keys have the same clear
value. On the other system, the external key token can be
imported to make it operational.

OPOP A key pair; normally with different control vector values.

The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed
into an internal key token. The key is then operational at the local
system. For AKEKs, the result is placed in a skeleton token created by
the key token build callable service.

Importable (IM)
The key value is enciphered under an importer key-encrypting key. The
result is placed into an external key token.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The key can then be
transported or exported to another system and imported there for use.
This key form cannot be used by any ICSF callable service.

The keys are placed into tokens that the generated_key_identifier_1 and
generated_key_identifier_2 parameters identify.

If this service is generating only the OP form for a DATA key, it marks the DATA
key with the data encryption algorithm according to the system default
encryption algorithm unless token copying overrides this. If this service is
generating only the OP form for an IMPORTER, it marks the IMPORTER with
the SYS-ENC (X'00') data encryption algorithm bits, unless token copying
overrides this. Marking of data encryption algorithm bits and token copying are
performed only if the service is processed on the Cryptographic Coprocessor
Feature. See the generated_key_identifier_1 parameter for more information on
token copying.

Valid key type combinations depend on the key form. See Table 16 for valid key
combinations.

key_length

Direction: Input Type: Character string

Key Generate (CSNBKGN)

84 z/OS V1R3.0 ICSF Application Programmer’s Guide

An 8-byte value that defines the setting of each part of a double-length or
triple-length key. The keyword must be left-justified and padded on the right with
blanks. You must supply one of the key length values from Table 13 in the
key_length parameter.

To generate a single-length key, specify key_length as SINGLE or KEYLN8.

Use SINGLE if you want to create a transport key that you would use to
exchange DATA keys with a PCF system. Because PCF does not use
double-length transport keys, specify SINGLE so that the effects of multiple
encipherment are nullified.

The SINGLE-R keyword (″single replicated″) specifies a double-length key
where both halves of the key are identical. This key performs as though the key
were single length.

Double-length (16-byte) keys have an 8-byte left half and an 8-byte right half.
Both halves can have identical clear values or not. If you want the same value
to be used in both key halves, specify key_length as SINGLE or KEYLN8. If
you want different values to be the basis of each key half, specify key_length as
DOUBLE or KEYLN16.

Triple-length (24-byte) keys have three 8-byte key parts. This key length is valid
for DATA keys only. To generate a triple-length DATA key with three different
values to be the basis of each key part, specify key_length as KEYLN24.

When generating an AKEK, the key_length parameter is ignored. The AKEK key
length (8-byte or 16-byte) is determined by the skeleton token created by the
key token build callable service and provided in the generated_key_identifier_1
parameter.

The following key types may only be generated through the TOKEN keyword
with the appropriate control vector.

Table 13. Key Length Values for the Key Generate Callable Service

Keyword Meaning

DOUBLE A 16-byte key with independent 8-byte parts. Valid for
CIPHER, CVARDEC, CVARENC, CVARPINE, CVARXCVL,
CVARXCVR, DATA, DATAC, DATAM, DATAMV, DECIPHER,
DKYGENKY, ENCIPHER, EXPORTER, IKEYXLAT,
IMPORTER, IPINENC, KEYGENKY, OKEYXLAT, OPINENC,
PINGEN, and PINVER key types.

For DATA keys, DOUBLE generates a standard token
containing two separate 8-byte DATA keys.

KEYLN8 Synonymous with SINGLE.

KEYLN16 Valid for all key types except DATAXLAT, MAC, and
MACVER. Synonymous with DOUBLE.

KEYLN24 Valid for DATA key type only. Generates a standard token
containing three separate 8-byte DATA keys.

Key Generate (CSNBKGN)

Chapter 4. Managing DES Cryptographic Keys 85

Table 13. Key Length Values for the Key Generate Callable Service (continued)

Keyword Meaning

SINGLE Valid for all key types except DATAC, DATAM, and DATAMV.
For 8-byte keys (DATAXLAT, MAC, and MACVER), this is the
only valid value for the key_length parameter.

For DATA keys, SINGLE generates a standard token
containing a single-length key.

For 16-byte keys (EXPORTER, IMPORTER, IPINENC,
OPINENC, PINGEN, PINVER), SINGLE generates effective
single-length for those key types. Therefore, each half of the
16-byte key has the same clear value.

Note that the following restrictions exist when you specify
SINGLE for 16-byte keys.

v If you specify key_length as SINGLE and key_type_1 or
key_type_2 as any of the double-length keys (EXPORTER,
IMPORTER, IPINENC, OPINENC, PINGEN, PINVER), you
specify the parameter key_form as IMEX, parameter
kek_key_identifier_1 must contain a NOCV IMPORTER
key-encrypting key, either as a key label or an internal key
token.

v If you specify SINGLE for any double-length keys, the
CKDS must contain NOCV enablement keys.

SINGLE-R A double-length key with equal valued halves.

key_type_1

Direction: Input Type: Character string

An 8-byte keyword from the list shown in Table 14 on page 87 or the keyword
TOKEN. Use the key_type_1 parameter for the first, or only key, that you want
generated. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form.

If key_type_1 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_1 parameter to derive the key type. The
generated_key_identifier_1 parameter must be a key token, not a key label.
When key_type_1 is TOKEN, ICSF does not check for the length of the key for
DATA keys. Instead, ICSF uses the key_length parameter to determine the
length of the key.

To generate an AKEK, specify a key_type_1 of TOKEN. The
generated_key_identifier_1 parameter must be a skeleton token of an AKEK
created by the key token build (CSNBKTB) callable service. The token cannot
be a partially notarized AKEK or an AKEK key part.

See Table 15 and Table 16 for valid key type and key form combinations.

key_type_2

Direction: Input Type: Character string

An 8-byte keyword from the list shown in Table 14 on page 87 or the word
TOKEN. Use the key_type_2 parameter for a key pair, which is shown in

Key Generate (CSNBKGN)

86 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 16 on page 91. The keyword must be left-justified and padded with
blanks. Valid type combinations depend on the key form.

If key_type_2 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_2 parameter to derive the key type. When key_type_2
is TOKEN, ICSF does not check for the length of the key for DATA keys.
Instead, ICSF uses the key_length parameter to determine the length of the
key.

Note: Key types marked with an ″*″ must be requested through the
specification of a proper control vector in a key token and through the
use of the TOKEN keyword.

If you want only one key to be generated, specify the key_type_2 and
KEK_key_identifier_2 as binary zeros.

Table 14. Key Type Values for the Key Generate Callable Service

Key Type Meaning

CIPHER Used only to encrypt or decrypt data. Possible key
lengths are single-length or double-length. CIPHER keys
cannot be used in the Encipher (CSNBENC) or Decipher
(CSNBDEC) callable services.

CVARDEC* The TSS Cryptographic variable decipher verb uses a
CVARDEC key to decrypt plaintext by using the Cipher
Block Chaining (CBC) method. Possible key lengths are
single-length or double-length.

CVARENC* Cryptographic variable encipher service uses a
CVARENC key to encrypt plaintext by using the Cipher
Block Chaining (CBC) method. Possible key lengths are
single-length or double-length.

CVARPINE* Used to encrypt a PIN value for decryption in a
PIN-printing application. Possible key lengths are
single-length or double-length.

CVARXCVL* Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

CVARXCVR* Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

DATA Data-encrypting key. Use this single-length,
double-length, or triple-length key to encipher and
decipher data.

DATAC* Used to specify a DATA-class key that will perform in the
Encipher and Decipher callable services, but not in the
MAC Generate or MAC Verify callable services. This is a
double-length key.

DATAM MAC generation key. May be specified explicitly as a key
type or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a key
type or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to
reencipher text from one DATA key to another.

Key Generate (CSNBKGN)

Chapter 4. Managing DES Cryptographic Keys 87

Table 14. Key Type Values for the Key Generate Callable Service (continued)

Key Type Meaning

DECIPHER Used only to decrypt data. Possible key lengths are
single-length or double-length. DECIPHER keys cannot
be used in the Encipher (CSNBENC) or Decipher
(CSNBDEC) callable services.

DKYGENKY* Used to generate a diversified key based on the
key-generating key. This is a double-length key.

ENCIPHER Used only to encrypt data. Possible key lengths are
single-length or double-length. ENCIPHER keys cannot
be used in the Encipher (CSNBENC) or Decipher
(CSNBDEC) callable services.

EXPORTER Exporter key-encrypting key. Use this double-length key
to convert any key (including a DATA key) from
operational form into exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate
callable service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length key
to convert a key from importable form into operational
form.

IPINENC Input PIN-encrypting key. Use this double-length input
key to translate PINs. PIN blocks received from other
nodes or automatic teller machine (ATM) terminals are
encrypted under this type of key. These encrypted PIN
blocks are the input to the Encrypted PIN translate and
Encrypted PIN verify callable services.

KEYGENKY* Used to generate a key based on the key-generating key.
This is a double-length key.

MAC MAC generation key. Use this single-length key to
generate a message authentication code.

MACVER MAC verification key. Use this single-length key to verify
a message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate
callable service. This is a double-length key.

OPINENC Double-length output PIN-encrypting key. The output PIN
blocks from the Encrypted PIN translate, Encrypted PIN
generate, and Clear PIN generate alternate callable
services are encrypted under this type of key. If an
encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an
OPINENC key.

PINGEN PIN generation key. Use this double-length key to
generate PINs.

PINVER PIN verification key. Use this double-length key to verify
PINs.

See Table 15 on page 91 and Table 16 on page 91 for valid key type and key
form combinations.

KEK_key_identifier_1

Direction: Input/Output Type: String

Key Generate (CSNBKGN)

88 z/OS V1R3.0 ICSF Application Programmer’s Guide

A 64-byte string of an internal key token containing the importer or exporter
key-encrypting key, or a key label. If you supply a key label that is less than
64-bytes, it must be left-justified and padded with blanks. KEK_key_identifier_1
is required for a key_form of IM, EX, IMEX, EXEX, or IMIM.

If the key_form is OP, OPEX, OPIM, or OPOP, the KEK_key_identifier_1 is null.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or key 0-7.

Control vectors are explained in “Control Vector” on page 16 and the NOCV bit
is shown in Table 97 on page 365.

KEK_key_identifier_2

Direction: Input/Output Type: String

A 64-byte string of an internal key token containing the importer or exporter
key-encrypting key, or a key label of an internal token. If you supply a key label
that is less than 64-bytes, it must be left-justified and padded with blanks.
KEK_key_identifier_2 is required for a key_form of OPIM, OPEX, IMEX, IMIM,
or EXEX. This field is ignored for key_form keywords OP, IM and EX.

For DATA and KEK (importer and exporter) types, the key generate service
propagates the data encryption algorithm bits from the KEK you supply to the
key it generates, unless overridden by token copying. In generating an
IMPORTER or EXPORTER OP KEK, this service marks the key CDMF, DES, or
SYS-ENC, corresponding to kek_key_identifier_2. In generating an OP DATA
key, if the kek_key_identifier_2 is SYS-ENC, this service marks the key
according to the system default encryption algorithm. Otherwise, it marks the
key CDMF or DES, corresponding to the kek_key_identifier_2. Propagation of
token markings is only relevant when this service is processed on the
Cryptographic Coprocessor Feature. For more information on token copying,
see the generated_key_identifier_1 parameter.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector” on page 16 and the NOCV bit
is shown in Table 97 on page 365.

generated_key_identifier_1

Direction: Input/Output Type: String

This parameter specifies either a generated:

Key Generate (CSNBKGN)

Chapter 4. Managing DES Cryptographic Keys 89

v Internal key token for an operational key form, or

v External key token containing a key enciphered under the
kek_key_identifier_1 parameter.

If you specify a key_type_1 of TOKEN, then this field contains a valid token of
the key type you want to generate. See Table 14 on page 87 for a list of valid
key_type_1 key types.

If you specify a key_type_1 of IMPORTER or EXPORTER and a key_form of
OPEX, and if the generated_key_identifier_1 parameter contains a valid internal
token of the SAME type, the NOCV bit, if on, is propagated to the generated
key token.

Note: Propagation of the NOCV bit is performed only if the service is
processed on the Cryptographic Coprocessor Feature.

If you specify a key_type_1 of DATA or IMPORTER, and a key_form of OP, and
the generated_key_identifier_1 parameter contains a valid internal token of the
same type, the data encryption algorithm bits are copied to the generated key
token. This overrides any markings on the kek_key_identifier_2. If you specify a
key_type_1 of DATA, IMPORTER, or EXPORTER and a key_form of OPIM or
OPEX and the generated_key_identifier_1 parameter contains a valid internal
token of the same type, the data encryption algorithm bits are copied to the
generated key token. This overrides any data encryption algorithm bit markings
on the kek_key_identifier_2.

Note: Marking of data encryption algorithm bits and token copying are
performed only if the service is processed on the Cryptographic
Coprocessor Feature.

When generating an AKEK, specify the skeleton key token created by the key
token build callable service (CSNBKTB) as input for this parameter.

generated_key_identifier_2

Direction: Input/Output Type: String

This parameter specifies a generated external key token containing a key
enciphered under the kek_key_identifier_2 parameter.

If you specify a key_type_2 of TOKEN, then this field contains a valid token of
the key type you want to generate. See Table 14 on page 87 for a list of the
valid key_type_2 key types. The token can be an internal or external token.

Restriction
The caller must be in task mode, not in SRB mode.

Usage Notes
No external tokens that this service generates contain data encryption algorithm bit
markings.

It is possible to generate an operational DES-marked DATA key on a CDMF-only
system or a CDMF-marked DATA key on a DES-only system. However, the

Key Generate (CSNBKGN)

90 z/OS V1R3.0 ICSF Application Programmer’s Guide

encipher (CSNBENC) and decipher (CSNBDEC) callable services fail when you use
these keys on the systems where they were generated unless overridden by
keyword.

Double-length MAC keys (DATAM and DATAMV) can be generated in the same key
forms as single-length MAC keys.

Table 15 shows the valid key type and key form combinations for a single key. Key
types marked with an ″*″ must be requested through the specification of a proper
control vector in a key token and through the use of the TOKEN keyword.

Table 15. Key Generate Valid Key Types and Key Forms for a Single Key

Key Type 1 Key Type 2 OP IM EX

DATA Not applicable X X X

DATAC* Not applicable X X X

DATAM Not applicable X X X

DKYGENKY* Not applicable X X X

KEYGENKY* Not applicable X X X

MAC Not applicable X X X

PINGEN Not applicable X X X

Table 16 shows the valid key type and key form combinations for a key pair. Key
types marked with an ″*″ must be requested through the specification of a proper
control vector in a key token and through the use of the TOKEN keyword.

Table 16. Key Generate Valid Key Types and Key Forms for a Key Pair

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CIPHER CIPHER X X X X

CIPHER DECIPHER X X X X

CIPHER ENCIPHER X X X X

CVARDEC* CVARENC* X X

CVARDEC* CVARPINE* X X

CVARENC* CVARDEC* X X

CVARENC* CVARXCVL* X X

CVARENC* CVARXCVR* X X

CVARXCVL* CVARENC* X X

CVARXCVR* CVARENC* X X

CVARPINE* CVARDEC* X X

DATA DATA X X X X

DATA DATAXLAT X X X

DATAC* DATAC* X X X X

DATAM DATAM X X X X

DATAM DATAMV X X X X

DATAXLAT DATAXLAT X X X

DECIPHER CIPHER X X X X

Key Generate (CSNBKGN)

Chapter 4. Managing DES Cryptographic Keys 91

Table 16. Key Generate Valid Key Types and Key Forms for a Key Pair (continued)

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

DECIPHER ENCIPHER X X X X

DKYGENKY* DKYGENKY* X X X X

ENCIPHER CIPHER X X X X

ENCIPHER DECIPHER X X X X

EXPORTER IKEYXLAT X X X

EXPORTER IMPORTER X X X

IKEYXLAT EXPORTER X X X

IKEYXLAT OKEYXLAT X X X

IMPORTER EXPORTER X X X

IMPORTER OKEYXLAT X X X

IPINENC OPINENC X X X X

KEYGENKY* KEYGENKY* X X X X

MAC MAC X X X X

MAC MACVER X X X X

OKEYXLAT IKEYXLAT X X X

OKEYXLAT IMPORTER X X X

OPINENC IPINENC X X X X

OPINENC OPINENC X

PINVER PINGEN X X X

PINGEN PINVER X X X

Note: If the key_form is IMEX, the key_length is SINGLE, and key_type_1 is
IPINENC, OPINENC, PINGEN, IMPORTER, or EXPORTER, you must
specify the kek_key_identifier_1 parameter as NOCV IMPORTER.

To use NOCV key-encrypting keys, NOCV-enablement keys must be installed in the
CKDS.

To generate DATAM and DATAMV keys in the importable form, the ANSI system
keys must be installed in the CKDS.

Key Import (CSNBKIM)
Use the key import callable service to reencipher a key (except an AKEK) from
encryption under an importer key-encrypting key to encryption under the master
key. The reenciphered key is in operational form.

This service examines the data encryption algorithm bits on the operational KEK
supplied. It propagates the DES, CDMF, or SYS-ENC markings on the KEK token
to the imported KEK or DATA key token unless token copying overrides this. It
propagates the SYS-ENC marking to the KEK and marks the DATA key according
to the system's default encryption algorithm. Propagation of token markings is only

Key Generate (CSNBKGN)

92 z/OS V1R3.0 ICSF Application Programmer’s Guide

relevant when this service is processed on the Cryptographic Coprocessor Feature.
See the target_key_identifier and importer_key_identifier parameters for more
information.

For DATA keys, this service generates a key of the same length as that contained in
the input token.

ICSF routes the Key Import request to a PCI Cryptographic Coprocessor if the
control vector in a supplied internal token cannot be processed on the
Cryptographic Coprocessor Feature, or if the key type is not valid for the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails.

Format

CALL CSNBKIM(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

Key Import (CSNBKIM)

Chapter 4. Managing DES Cryptographic Keys 93

|
|
|
|
|

The data that is passed to the installation exit.

key_type

Direction: Input Type: Character string

The type of key you want to reencipher under the master key. Specify an 8-byte
keyword or the keyword TOKEN. The keyword must be left-justified and padded
on the right with blanks. The key types you can specify are listed in Table 17.

To import a double-length MAC generation key, use a key type of DATAM or
TOKEN. To import a double-length MAC verification key, use a key type of
DATAMV or TOKEN.

For a double-length MAC key with a key type of DATAM, the source key
identifier must specify an external token that uses the data compatibility control
vector. For a double-length MAC key with a key type of MACD, the source key
identifier must specify an external token that uses the single-length control
vector for both the left and right half of the key (MAC { MAC). For a table of
control vectors, refer to “Control Vector Table” on page 383.

If the key type is TOKEN, ICSF determines the key type from the control vector
(CV) field in the external key token provided in the source_key_identifier
parameter. If the control vector is invalid on the Cryptographic Coprocessor
Feature, the key import request will be routed to the PCI Cryptographic
Coprocessor.

Table 17. Key Type Values for the Key Import Callable Service

Key Type Meaning

AKEK ANSI X9.17 key-encrypting key. A single-length or
double-length key that must be ANSI notarized and
offset before use as a key-encrypting key. The default
is double-length.

CIPHER Used only to encrypt or decrypt data. Possible key
lengths are single-length or double-length. CIPHER
keys cannot be used in the Encipher (CSNBENC) or
Decipher (CSNBDEC) callable services.

DATA Data-encrypting key. Use this single-length,
double-length, or triple-length key to encipher and
decipher data.

DATAC Used to specify a DATA-class key that will perform in
the Encipher and Decipher callable services, but not
in the MAC Generate or MAC Verify callable services.
This is a double-length key.

DATAM MAC generation key. May be specified explicitly as a
key type or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a
key type or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to
reencipher text from one DATA key to another.

DECIPHER Used only to decrypt data. Possible key lengths are
single-length or double-length. DECIPHER keys
cannot be used in the Encipher (CSNBENC) or
Decipher (CSNBDEC) callable services.

Key Import (CSNBKIM)

94 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 17. Key Type Values for the Key Import Callable Service (continued)

Key Type Meaning

ENCIPHER Used only to encrypt data. Possible key lengths are
single-length or double-length. ENCIPHER keys
cannot be used in the Encipher (CSNBENC) or
Decipher (CSNBDEC) callable services.

EXPORTER Exporter key-encrypting key. Use this double-length
key to convert any key (including a DATA key) from
operational form into exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate
callable service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length
key to convert a key from importable form into
operational form.

IMP-PKA Limited authority importer key. Use this double-length
key to import an encrypted RSA or DSS private key.

IPINENC Input PIN-encrypting key. Use this double-length input
key to translate PINs. PIN blocks received from other
nodes or automatic teller machine (ATM) terminals are
encrypted under this type of key. These encrypted
PIN blocks are the input to the Encrypted PIN
translate and Encrypted PIN verify callable services.

MAC MAC generation key. Use this single-length key to
generate a message authentication code.

MACD Double-length MAC generation and verification key.
ICSF continues to support this key type for
compatibility with ICSF/MVS Version 2 Release 1.

MACVER MAC verification key. Use this single-length key to
verify a message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate
callable service. This is a double-length key.

OPINENC Double-length output PIN-encrypting key. The output
PIN blocks from the Encrypted PIN translate,
Encrypted PIN generate, and Clear PIN generate
alternate callable services are encrypted under this
type of key. If an encrypted PIN block is contained in
the output of the SET Block Decompose service, it
may be encrypted by an OPINENC key.

PINGEN PIN generation key. Use this double-length key to
generate PINs.

PINVER PIN verification key. Use this double-length key to
verify PINs.

source_key_identifier

Direction: Input Type: String

The key you want to reencipher under the master key. The parameter is a
64-byte field for the enciphered key to be imported containing either an external
key token or a null key token. If you specify a null token, the token is all binary
zeros, except for a key in bytes 16-23 or 16-31, or in bytes 16-31 and 48-55 for
triple-length DATA keys. Refer to Table 99 on page 368.

Key Import (CSNBKIM)

Chapter 4. Managing DES Cryptographic Keys 95

If key type is TOKEN, this field may not specify a null token.

This service supports the no-export function in the CV.

importer_key_identifier

Direction: Input/Output Type: String

The importer key-encrypting key that the key is currently encrypted under. The
parameter is a 64-byte area containing either the key label of the key in the
cryptographic key data set or the internal key token for the key. If you supply a
key label that is less than 64-bytes, it must be left-justified and padded with
blanks.

This service examines data encryption algorithm bits on the operational KEK
token supplied. It propagates DES or CDMF markings on the KEK token to the
imported KEK or DATA key token unless token copying overrides this. For
SYS-ENC marking, this service propagates the marking to the KEK or marks
the DATA key according to the default system encryption algorithm, unless
token copying overrides this.

Note: If you specify a NOCV importer in the importer_key_identifier parameter,
the key to be imported must be enciphered under the importer key itself.

target_key_identifier

Direction: Input/Output Type: String

This parameter is the generated reenciphered key. The parameter is a 64-byte
area that receives the internal key token for the imported key.

If the imported key TYPE is IMPORTER or EXPORTER and the token key
TYPE is the same, the target_key_identifier parameter changes direction to
both input and output. If the application passes a valid internal key token for an
IMPORTER or EXPORTER key in this parameter, the NOCV bit is propagated
to the imported key token.

Note: Propagation of the NOCV bit is performed only if the service is
processed on Cryptographic Coprocessor Feature.

If the key_type is DATA, IMPORTER, or EXPORTER and the application
passes a valid internal key token for a DATA, IMPORTER, or EXPORTER key
in the target_key_identifier, this service propagates the data encryption
algorithm bits to the imported key token. Any data encryption algorithm bits
supplied on importer_key_identifier are ignored.

Note: Marking of data encryption algorithm bits and token copying are
performed only if the service is processed on the Cryptographic
Coprocessor Feature.

Usage Notes
For the key import callable service, choose one of the following options:

v Specify the key_type parameter as TOKEN and specify the external key token in
the source_key_identifier parameter. The key type information is determined from
the control vector in the external key token.

Key Import (CSNBKIM)

96 z/OS V1R3.0 ICSF Application Programmer’s Guide

v Specify a key type in the key_type parameter and specify an external key token
in the source_key_identifier parameter. The specified key type must be
compatible with the control vector in the external key token.

v Specify a valid key type in the key_type parameter and a null key token in the
source_key_identifier parameter. Use the control vector that maps to the
specification of the key_type parameter.

The key import callable service cannot be used to import ANSI key-encrypting keys.
For information on importing these types of keys, refer to “ANSI X9.17 Key Import
(CSNAKIM)” on page 324.

If the key type is MACD or IMP-PKA, the control vectors of supplied internal tokens
must all be supported by the Cryptographic Coprocessor Feature, since processing
for these key types will not be routed to a PCI Cryptographic Coprocessor.

For Source key encrypted without CVs, the length of DATA keys is determined by
non-zero enciphered key values.

To use NOCV key-encrypting keys or to import DATAM or DATAMV keys,
NOCV-enablement keys must be installed in the CKDS.

Key Import operations which specify a NOCV key-encrypting key as either the
importer key or the target and also specify a source or key-encrypting key which
contains a control vector not supported by the Cryptographic Coprocessor Feature
will fail.

Note: To import a double-length MAC generation key encrypted under a NOCV
KEK, use the DATAM key type value. To import a double-length MAC
verification key encrypted under a NOCV KEK, use the DATAMV key type
value. In either case, do not specify a key type value of TOKEN.

Key Part Import (CSNBKPI)
Use the key part import callable service to combine the clear key parts of any key
type and return the combined key value either in an internal token or as an update
to the CKDS.

Before you use the key part import service for the first key part, you must use the
key token build service to create the internal key token into which the key will be
imported. Subsequent key parts are combined with the first part in internal token
form or as a label from the CKDS.

Key parts are specified as FIRST, MIDDLE, or LAST in the rule_array. Only when
the LAST part has been combined can the key token be used in any other service.

The key part import callable service can also be used to import a key without using
key parts. Call the key part import service FIRST with key part value X'0000...' then
call the key part import service LAST with the complete value.

Keys created via this service have odd parity. The FIRST key part is adjusted to
odd parity. All subsequent key parts are adjusted to even parity before being
combined.

ICSF routes all requests to the PCI Cryptographic Coprocessor except for key type
of AKEK. AKEK is always processed on the Cryptographic Coprocessor Feature.

Key Import (CSNBKIM)

Chapter 4. Managing DES Cryptographic Keys 97

Format

CALL CSNBKPI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1.

rule_array

Direction: Input Type: String

Key Part Import (CSNBKPI)

98 z/OS V1R3.0 ICSF Application Programmer’s Guide

The keyword that provides control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Table 18. Keywords for Key Part Import Control Information

Keyword Meaning

Key Part (Required)

FIRST This keyword specifies that an initial key part is being
entered.

LAST This keyword specifies that the last key part is being
entered.

MIDDLE This keyword specifies that an intermediate key part, which
is neither the first key part nor the last key part, is being
entered.

key_part

Direction: Input Type: String

A 16-byte field containing the clear key part to be entered. If the key is a
single-length key, the key part must be left-justified and padded on the right with
zeros.

key_identifier

Direction: Input/Output Type: String

A 64-byte field containing an internal token or a label of an existing CKDS
record. If rule_array is FIRST, this field is the skeleton of an internal token of a
single- or double-length key with the KEY-PART marking. If rule_array is
MIDDLE or LAST, this is an internal token or the label of a CKDS record of a
partially combined key. Depending on the input format, the accumulated partial
or complete key is returned as an internal token or as an updated CKDS
record. The returned key_identifier will be encrypted under the current master
key.

Restriction
The caller must be in task mode and must not be in cross memory mode. If a label
is specified on key_identifier, the label must be unique. If more than one record is
found, the service fails.

Usage Note
This service requires that the ANSI system keys be installed on the CKDS.

Related Information
This service is consistent with the Transaction Security System key part import
verb.

Key Part Import (CSNBKPI)

Chapter 4. Managing DES Cryptographic Keys 99

Key Record Create (CSNBKRC)
Use the key record create callable service to add a key record to the CKDS. The
record contains a key token set to binary zeros and is identified by the label passed
in the key_label parameter. This service updates both the DASD copy of the CKDS
currently in use by ICSF and the in-storage copy of the CKDS.

Format

CALL CSNBKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
created record contains a key token set to binary zeros and has a key type of
NULL.

Key Record Create (CSNBKRC)

100 z/OS V1R3.0 ICSF Application Programmer’s Guide

Restrictions
The caller must be in task mode and must not be in cross memory mode. The
record must have a unique label. Therefore, there cannot be another record in the
CKDS with the same label and a different key type.

Usage Notes
The key record create callable service checks the syntax of the label provided in
the key_label parameter to ensure that it follows the KGUP rules. To bypass label
syntax checking, use a preprocessing exit to turn on the bypass parse bit in the Exit
Parameter Control Block (EXPB). For more information about preprocessing exits
and the EXPB, refer to the z/OS ICSF System Programmer’s Guide.

You must use either the key record create callable service or KGUP to create an
initial record in the CKDS before you can use the key record write service to update
the record with a valid key token. Your applications perform better if you use KGUP
to create the initial records and REFRESH the entire in-storage copy of the CKDS,
rather than using key record create to create the initial NULL key entries. This is
particularly true if you are creating a large number of key records. Key record
create adds a record to a portion of the CKDS that is searched sequentially during
key retrieval. Using KGUP followed by a REFRESH puts the null key records in the
portion of the CKDS that is ordered in key-label/type sequence. A binary search of
the key-label/type sequenced part of the CKDS is more efficient than searching the
sequentially ordered section.

Key Record Delete (CSNBKRD)
Use the key record delete callable service to delete a key record from both the
DASD copy of the CKDS and the in-storage copy.

Format

CALL CSNBKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Key Record Create (CSNBKRC)

Chapter 4. Managing DES Cryptographic Keys 101

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. This number
must always be 1.

rule_array

Direction: Input Type: Character string

The 8 byte keyword that defines the action to be performed. The keyword must
be LABEL-DL.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
record pointed to by this label is deleted.

Restrictions
The caller must be in task mode and must not be in cross memory mode. The
record defined by the key_label must be unique. If more than one record per label
is found, the service fails.

Key Record Read (CSNBKRR)
Use the key record read callable service to copy an internal key token from the
in-storage CKDS to application storage. Other cryptographic services can then use
the copied key token directly. The key token can also be used as input to the token
copying functions of key generate, key import, or secure key import services to
create additional NOCV keys.

Key Record Delete (CSNBKRD)

102 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format

CALL CSNBKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label,
key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it indicating specific processing problems. Appendix A, “ICSF and TSS Return
and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the in-storage CKDS. The internal key token in
this record is returned to the caller.

key_token

Direction: Output Type: String

The 64-byte internal key token retrieved from the in-storage CKDS.

Key Record Read (CSNBKRR)

Chapter 4. Managing DES Cryptographic Keys 103

Restrictions
The record defined by the key_label parameter must be unique and must already
exist in the CKDS.

Key Record Write (CSNBKRW)
Use the key record write callable service to write an internal key token to the CKDS
record specified by the key_label parameter. This service supports writing a record
to the CKDS which contains a key token with a control vector which is not
supported by the Cryptographic Coprocessor Feature. These records will be written
to the CKDS with a key type of CV, unless the key is an IMPORTER, EXPORTER,
PINGEN, PINVER, IPINENC, or OPINENC type. These key types will be preserved
in the CKDS record, even if the control vector is not supported by the Cryptographic
Coprocessor Feature. This service updates both the DASD copy of the CKDS
currently in use by ICSF and the in-storage copy. The record you are updating must
be unique and must already exist in both the DASD and in-storage copies of the
CKDS.

Format

CALL CSNBKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

Key Record Read (CSNBKRR)

104 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_token

Direction: Input/output Type: String

The 64-byte internal key token that is written to the CKDS.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
record is updated with the internal key token supplied in the key_token
parameter.

Restrictions
The caller must be in task mode and must not be in cross memory mode. The
record defined by the key_label parameter must be unique and must already exist
in the CKDS.

Related Information
You can use this service with the key record create callable service to write an
initial record to key storage. Use it following the key import and key generate
callable services to write an operational key imported or generated by these
services directly to the CKDS.

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)
Use the key test callable service to generate or verify a secure, cryptographic
verification pattern for keys. The key to test can be in the clear or encrypted under
the master key. The key test extended callable service also supports keys
encrypted under a key-encrypting key (KEK). Keywords in the rule array specify
whether the callable service generates or verifies a verification pattern.

When the service generates a verification pattern, it creates and cryptographically
processes a random number. The service returns the random number with the
verification pattern.

When the service tests a verification pattern against a key, you must supply the
random number and the verification pattern from a previous call to key test or key
test extended. The service returns the verification result in the return and reason
codes.

CSNBKYT is consistent with the Transaction Security System verb of the same
name. If you generate a key on the Transaction Security System, you can verify it
on ICSF and vice versa.

Key Record Write (CSNBKRW)

Chapter 4. Managing DES Cryptographic Keys 105

The key test callable service does not support triple-length DATA keys. CSNBKYT
will be routed to a PCI Cryptographic Coprocessor for processing if ANSI
enablement keys are not installed in the CKDS. ENC-ZERO requests are routed to
the PCI Cryptographic Coprocessor.

The CSNBKYTX callable service is processed on the Cryptographic Coprocessor
Feature. Rule_array keywords KEY-CLR, KEY-CLRD, and ENC-ZERO are not valid
for CSNBKYTX.

Format

CALL CSNBKYT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern)

CALL CSNBKYTX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern,
kek_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)

106 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|

|
|
|

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 2 or 3.

rule_array

Direction: Input Type: String

Two or three keywords that provide control information to the callable service.
Table 19 lists the keywords. The keywords must be in 16 or 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks.

Table 19. Keywords for Key Test and Key Test Extended Control Information

Keyword Meaning

Key Rule (required)

KEY-CLR Specifies the key supplied in key_identifier is a
single-length clear key. This keyword is not valid for the
key test extended callable service.

KEY-CLRD Specifies the key supplied in key_identifier is a
double-length clear key. This keyword is not valid for
the key test extended callable service.

KEY-ENC Specifies the key supplied in key_identifier is a
single-length encrypted key.

KEY-ENCD Specifies the key supplied in key_identifier is a
double-length encrypted key.

Process Rule (required)

GENERATE Generate a verification pattern for the key supplied in
key_identifier.

VERIFY Verify a verification pattern for the key supplied in
key_identifier.

Parity Adjustment (optional)

ADJUST Adjust the parity of test key to odd before generating or
verifying the verification pattern. The key_identifier field
itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd before
generating or verifying the verification pattern. This is
the default.

Verification Process Rule (optional)

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)

Chapter 4. Managing DES Cryptographic Keys 107

||
|
|

||
|
|

Table 19. Keywords for Key Test and Key Test Extended Control
Information (continued)

Keyword Meaning

ENC-ZERO Specifies use of the ″encrypted zeros″ method. Use
only with KEY-CLR, KEY-CLRD, KEY-ENC, or
KEY-ENCD keywords. This keyword is not valid for the
key test extended callable service.

key_identifier

Direction: Input/Output Type: String

The key for which to generate or verify the verification pattern. The parameter is
a 64-byte string of an internal token, key label, or a clear key value left-justified.
In the CSNBKYTX service, this parameter can also be an external token.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

random_number

Direction: Input/Output Type: String

This is an 8-byte field that contains a random number supplied as input for the
test pattern verification process and returned as output with the test pattern
generation process.

verification_pattern

Direction: Input/Output Type: String

This is an 8-byte field that contains a verification pattern supplied as input for
the test pattern verification process and returned as output with the test pattern
generation process.

kek_key_identifier

Direction: Input/Output Type: String

This parameter is for the CSNBKYTX service only. If key_identifier is an
external token, then this is a 64-byte string of an internal token or a key label of
an IMPORTER or EXPORTER used to encrypt the test key.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

Usage Notes
You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)

108 z/OS V1R3.0 ICSF Application Programmer’s Guide

||
|
|
|

In the Transaction Security System, KEY-ENC and KEY-ENCD both support
enciphered single-length and double-length keys. They use the key-form bits in byte
5 of CV to determine the length of the key. To be consistent, in ICSF, both
KEY-ENC and KEY-ENCD handle single- and double-length keys. Both products
effectively ignore the keywords, which are supplied only for compatibility reasons.

Rule_array keywords KEY-CLR, KEY-CLRD, and ENC-ZERO are not valid for the
CSNBKYTX callable service.

Key Token Build (CSNBKTB)
Use the key token build callable service to build an external or internal key token
from information which you supply. The token can be used as input for the key
generate and key part import callable services. You can specify a control vector or
the service can build a control vector based upon the key type you specify and the
control vector-related keywords in the rule array. ICSF supports the building of an
internal key token with the key encrypted under a master key other than the current
master key.

You can also use this service to update the DES, CDMF, or SYS-ENC markings in
a supplied DATA, IMPORTER, or EXPORTER token and to build CCA key tokens
for all key types ICSF supports.

Format

CALL CSNBKTB(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_type,
rule_array_count,
rule_array,
key_value,
master_key_version_number,
key_register_number,
secure_token,
control_vector,
initialization_vector,
pad_character,
cryptographic_period_start,
masterkey_verify_parm

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)

Chapter 4. Managing DES Cryptographic Keys 109

|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Reserved field.

exit_data

Direction: Input/Output Type: String

Reserved field.

key_token

Direction: Input/Output Type: String

If the following parameter key_type is TOKEN then this is a 64-byte internal
token that is updated as specified in the rule_array. The internal token must be
a DATA, IMPORTER or EXPORTER key type. Otherwise this field is an
output-only field.

key_type

Direction: Input Type: String

An 8-byte field that specifies the type of key you want to build or the keyword
TOKEN for updating a supplied token. If key_type is TOKEN, then the
key_token field cannot contain a double- or triple-length DATA key token. For a
list of keywords, see Table 20. No other keywords are valid. The TOKEN
keyword indicates changing an internal token in the key_token parameter. A
valid key_type indicates building a key token from the parameters specified.

Table 20. Key Type Values for the Key Token Build Callable Service

Key Type Meaning

AKEK ANSI X9.17 key-encrypting key. A single-length or
double-length key that must be ANSI notarized and offset
before use as a key-encrypting key. The default is
double-length.

CIPHER Used only to encrypt or decrypt data. Possible key lengths
are single-length or double-length. CIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher (CSNBDEC)
callable services.

CVARDEC The TSS Cryptographic variable decipher verb uses a
CVARDEC key to decrypt plaintext by using the Cipher Block
Chaining (CBC) method. Possible key lengths are
single-length or double-length.

CVARENC Cryptographic variable encipher service uses a CVARENC
key to encrypt plaintext by using the Cipher Block Chaining
(CBC) method. Possible key lengths are single-length or
double-length.

Key Token Build (CSNBKTB)

110 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 20. Key Type Values for the Key Token Build Callable Service (continued)

Key Type Meaning

CVARPINE Used to encrypt a PIN value for decryption in a PIN-printing
application. Possible key lengths are single-length or
double-length.

CVARXCVL Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

CVARXCVR Used to encrypt special control values in DES key
management. Possible key lengths are single-length or
double-length.

DATA Data-encrypting key. Use this single-length, double-length, or
triple-length key to encipher and decipher data.

DATAC Used to specify a DATA-class key that will perform in the
Encipher and Decipher callable services, but not in the MAC
Generate or MAC Verify callable services. This is a
double-length key.

DATAM MAC generation key. May be specified explicitly as a key type
or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a key type
or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to reencipher
text from one DATA key to another.

DECIPHER Used only to decrypt data. Possible key lengths are
single-length or double-length. DECIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher (CSNBDEC)
callable services.

DKYGENKY Used to generate a diversified key based on the
key-generating key.

ENCIPHER Used only to encrypt data. Possible key lengths are
single-length or double-length. ENCIPHER keys cannot be
used in the Encipher (CSNBENC) or Decipher (CSNBDEC)
callable services.

EXPORTER Exporter key-encrypting key. Use this double-length key to
convert any key (including a DATA key) from operational form
into exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable
service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length key to
convert a key from importable form into operational form.

IPINENC Input PIN-encrypting key. Use this double-length input key to
translate PINs. PIN blocks received from other nodes or
automatic teller machine (ATM) terminals are encrypted under
this type of key. These encrypted PIN blocks are the input to
the Encrypted PIN translate and Encrypted PIN verify callable
services.

KEYGENKY Used to generate a key based on the key-generating key.
This is a double-length key.

MAC MAC generation key. Use this single-length key to generate a
message authentication code.

MACVER MAC verification key. Use this single-length key to verify a
message authentication code.

Key Token Build (CSNBKTB)

Chapter 4. Managing DES Cryptographic Keys 111

Table 20. Key Type Values for the Key Token Build Callable Service (continued)

Key Type Meaning

OKEYXLAT Used to encrypt an output key in the Key Translate callable
service. This is a double-length key.

OPINENC Double-length output PIN-encrypting key. The output PIN
blocks from the Encrypted PIN translate, Encrypted PIN
generate, and Clear PIN generate alternate callable services
are encrypted under this type of key. If an encrypted PIN
block is contained in the output of the SET Block Decompose
service, it may be encrypted by an OPINENC key.

PINGEN PIN generation key. Use this double-length key to generate
PINs.

PINVER PIN verification key. Use this double-length key to verify PINs.

SECMSG Used to encrypt PINs or keys in a secure message. This is a
double-length key.

USE-CV Specifies that the key type should be obtained from the
control vector specified in the control_vector parameter. The
CV rule array keyword should be specified if USE-CV is
specified.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter.

rule_array

Direction: Input Type: String

One to four keywords that provide control information to the callable service.
See Table 21 for a list. The keywords must be in 8 to 32 bytes of contiguous
storage with each of the keywords left-justified in its own 8-byte location and
padded on the right with blanks. For any key type, there are no more than four
valid rule_array values.

If you specify TOKEN for the key_type, then the only valid rule_array values are
INTERNAL and DES, CDMF, or SYS-ENC. The Data Encryption Algorithm (see
the table that follows) keyword has no default. If you specify a key_type of
DATA, IMPORTER or EXPORTER, the Data Encryption Algorithm selection
keyword defaults to SYS-ENC. The other rule_array keywords do not apply.

Table 21. Keywords for Key Token Build Control Information

Keyword Meaning

Token Type (required)

EXTERNAL Specifies an external key token.

INTERNAL Specifies an internal key token.

Key Status (optional)

KEY This keyword indicates that the key token to build will contain
an encrypted key. The key_value parameter identifies the field
that contains the key.

Key Token Build (CSNBKTB)

112 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 21. Keywords for Key Token Build Control Information (continued)

Keyword Meaning

NO-KEY This keyword indicates that the key token to build will not
contain a key. This is the default key status.

Data Encryption Algorithm (optional) — valid only for single-length DATA keys and
KEKs.

CDMF For a DATA key, this keyword indicates marking the key token
as usable only with the CDMF. For a KEK, it indicates
marking the key token to specify that the KEK can encrypt
only a CDMF DATA key.

DES For a DATA key, this keyword indicates marking the key token
as usable only with the DES. For a KEK, it indicates marking
the key token to specify that the KEK can encrypt only a DES
DATA key.

SYS-ENC For a KEK, this keyword indicates marking the key token as
B'00'. This means that the KEK can protect CDMF- or
DES-marked DATA key tokens. For a DATA key, this indicates
marking the key token according to the encryption algorithm
of the system. For a CDMF system, the DATA key token is
marked CDMF; for a DES-CDMF or DES system, it is marked
DES. When key_type of DATA, IMPORTER or EXPORTER is
specified, SYS-ENC is the default.

CV on the Link Specification (optional) — valid only for IMPORTER and
EXPORTER.

CV-KEK This keyword indicates marking the KEK as a CV KEK. The
control vector is applied to the KEK before use in encrypting
other keys. This is the default.

NOCV-KEK This keyword indicates marking the KEK as a NOCV KEK.
The control vector is not applied to the KEK before use in
encrypting other keys. Services using NO-CV keys must be
processed on the Cryptographic Coprocessor Feature.

CV Status optional)

CV This keyword indicates to obtain the control vector from the
variable identified by the control_vector parameter.

NO-CV Default. This keyword indicates that the control vector is to be
supplied based on the key type and the control vector related
keywords.

Key Length Keywords (optional)

DOUBLE Double-length or 16-byte key. Synonymous with KEYLN16.
Note: See Table 22 on page 116 for valid key types for these
key length values.

DOUBLE-O Double-length 16-byte key valid only for AKEK. Both halves
may have the same clear values. DOUBLE-O is mutually
exclusive with SINGLE keyword. For AKEKs, DOUBLE-O is
the default. DOUBLE-O AKEKs generated by CSNBKGN will
have different left and right clear values.

KEYLN8 Single-length or 8-byte key.

KEYLN16 Double-length or 16-byte key.

KEYLN24 Triple-length, 24-byte key valid only for a DATA key type.

SINGLE Single-length or 8-byte key. Synonymous with KEYLN8.

Key Part Indicator (optional)

Key Token Build (CSNBKTB)

Chapter 4. Managing DES Cryptographic Keys 113

Table 21. Keywords for Key Token Build Control Information (continued)

Keyword Meaning

KEY-PART This token is to be used as input to the key part import
service.

Control Vector Keywords. Specify one or more of the following (optional)

See Table 22 on page 116 for the key-usage keywords that can be specified for a given
key type.

Master Key Verification Pattern (optional)

MKVP This keyword indicates that the key_value is enciphered
under the master key which corresponds to the master key
verification pattern specified in the masterkey_verify_parm
parameter. If this keyword is not specified, the key contained
in the key_value field must be enciphered under the current
master key.

key_value

Direction: Input Type: String

If you use the KEY keyword, this parameter is a 16-byte string that contains the
encrypted key value. Single-length keys must be left-justified in the field and
padded on the right with X'00'. If you are building a triple-length DATA key, this
parameter is a 24-byte string containing the encrypted key value. If you supply
an encrypted key value and also specify INTERNAL, the service will check for
the presence of the MKVP keyword. If MKVP is present, the service will
assume the key_value is enciphered under the master key which corresponds
to the master key verification pattern specified in the masterkey_verify_parm
parameter, and will place the key into the internal token along with the
verification pattern from the masterkey_verify_parm parameter. If MKVP is not
specified, ICSF assumes the key is enciphered under the current host master
key and places the key into an internal token along with the verification pattern
for the current master key. In this case, the application must ensure that the
master key has not changed since the key was generated or imported to this
system. Otherwise, use of this parameter is not recommended.

master_key_version_number

Direction: Input Type: Integer

This field is examined only if the KEY keyword is specified, in which case, this
field must be zero. If the KEY and INTERNAL keywords are specified in
rule_array, the service will check for the existence of the MKVP rule array
keyword. If MKVP is specified, the service will make use of the last parameter
specified (masterkey_verify_parm). The service assumes the key provided by
the key_value parameter is enciphered under the corresponding master key and
will place the key into the internal token along with the verification pattern from
the masterkey_verify_parm parameter.

key_register_number

Direction: Input Type: Integer

This field is ignored.

Key Token Build (CSNBKTB)

114 z/OS V1R3.0 ICSF Application Programmer’s Guide

secure_token

Direction: Input Type: String

This field is ignored.

control_vector

Direction: Input Type: String

A pointer to a 16 byte string variable. If this parameter is specified, and you use
the CV rule array keyword, the variable is copied to the control vector field of
the key token. See “Control Vector Table” on page 383 for additional
information.

initialization_vector

Direction: Input Type: String

This field is ignored.

pad_character

Direction: Input Type: Integer

The only allowed value for key types MAC and MACVER is 0. This field is
ignored for all other key types.

cryptographic_period_start

Direction: Input Type: String

This field is ignored.

masterkey_verify_parm

Direction: Input Type: String

A pointer to an 8-byte string variable. The value is inserted into the key token
when you specify both the KEY and INTERNAL keywords in rule array.

Usage Notes
You can use this service to create skeleton key tokens with the desired data
encryption algorithm bits for use in some key management services to override the
default system specifications.

v To generate an operational CDMF DATA key, build an internal DATA key token
with the CDMF keyword and pass that token to the key generate service in the
generated_key_identifier_1 parameter. This generates the desired DATA key
independently of the system encryption algorithm default. Similarly, for token
copying to override the system default data encryption algorithm bits, you can
use this service to build a skeleton token for input to the key generate, key
import, or secure key import callable services.

Key Token Build (CSNBKTB)

Chapter 4. Managing DES Cryptographic Keys 115

v To generate operational AKEKs, use key_type of TOKEN and provide a skeleton
AKEK key token as the generated_key_identifier_1 into the key generate service.

v The KEY-PART AKEK key token can also be used as input to key part import
service.

v To create an internal token with a specified KEY value, ICSF needs to supply a
valid master key verification pattern (MKVP).

The TOKEN key_type changes the data encryption algorithm bits only on an
existing DATA, IMPORTER or EXPORTER key token. Thus, if you specify TOKEN
as the key_type, the only valid rule_array values are INTERNAL and DES, CDMF,
or SYS-ENC. There is no default for the encryption algorithm selection.

Note: No pre- or post-processing or security exits are enabled for this service. No
RACF checking is done, and no calls to RACF are issued when this service
is used.

Use of NOCV keys is supported by ICSF. Services using NOCV keys must be
processed on a CCF. This means that the key token build service will fail a request
to build a key type which is not supported on the CCF if NOCV-KEK is also
specified in the rule array.

The following illustrates the key type and key usage keywords that can be
combined in the Control Vector Generate and Key Token Build callable services to
create a control vector.

Table 22. Control Vector Generate and Key Token Build Control Vector Keyword Combinations

Key Type Key Usage

Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default
(NO-SPEC) is specified.

Notes: Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default (NO-SPEC)
is specified.

DATA
CIPHER
ENCIPHER
DECIPHER
MAC
MACVER
CVARPINE
CVARENC
CVARDEC
CVARXCVL
CVARXCVR

SINGLE
KEYLN8
DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

KEYLN24 DATA

DATAC
DATAM
DATAMV

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

Key Token Build (CSNBKTB)

116 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 22. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key Type Key Usage

Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default
(NO-SPEC) is specified.

KEYGENKY CLR8-ENC
UKPT

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

DKYGENKY DDATA
DMAC
DMV
DIMP
DEXP
DPVR
DMKEY
DMPIN
DALL

DKYL0
DKYL1
DKYL2
DKYL3
DKYL4
DKYL5
DKYL6
DKYL7

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

SECMSG SMKEY
SMPIN

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

IKEYXLAT
OKEYXLAT

ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

IMPORTER OPIM*
IMEX*
IMIM*
IMPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

EXPORTER OPEX*
IMEX*
EXEX*
EXPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

PINVER NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

PINGEN CPINGEN*
CPINGENA*
EPINGENA*
EPINGEN*
EPINVER*

NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

IPINENC CPINGENA*
EPINVER*
REFORMAT*
TRANSLAT*

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

Key Token Build (CSNBKTB)

Chapter 4. Managing DES Cryptographic Keys 117

||
|
||||
|
|

|
|
|

Table 22. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key Type Key Usage

Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default
(NO-SPEC) is specified.

OPINENC CPINENC*
EPINGEN*
REFORMAT*
TRANSLAT*

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART

Related Information
The ICSF key token build callable service provides a subset of the parameters and
keywords available with the Transaction Security System key token build verb.

The following key types are not supported: ADATA, AMAC, CIPHERXI, CIPHERXL,
CIPHERXO, UKPTBASE.

The following rule array keywords are not supported: ACTIVE, ADAPTER, CARD,
CBC, CLEAR-IV, CUSP, INACTIVE, IPS, KEY-REF, MACLEN4, MACLEN6,
MACLEN8, NO-IV, READER, X9.2, X9.9-1.

The master_key_verification_number parameter has been replaced by the
master_key_version_number parameter. The master_key_version_number
parameter is examined only if the KEY keyword is specified, and in this case must
be zero. If KEY and INTERNAL are both specified in the rule array, the service will
check for the existence of a new optional rule array keyword, MKVP. If MKVP is
specified, the service will make use of the last parameter specified. Currently, this is
called masterkey_verify_parm and is always ignored. It will now be used to contain
a master key verification pattern if MKVP is specified in the rule_array. The service
assumes the key provided by the key_value parameter is enciphered under the
corresponding master key and will place the key into the internal token along with
the verification pattern from the masterkey_verify_parm parameter.

The key_register_number, secure_token, and initialization_vector parameters are
ignored.

The pad_character parameter must have a value of zero.

Key Translate (CSNBKTR)
The Key Translate callable service uses one key-encrypting key to decipher an
input key and then enciphers this key using another key-encrypting key within the
secure environment.

ICSF routes the Key Translate request to a PCI Cryptographic Coprocessor for
processing. If no PCI Cryptographic Coprocessor is online, the request fails.

Key Token Build (CSNBKTB)

118 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format

CALL CSNBKTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_key_token,
input_KEK_key_identifier,
output_KEK_key_identifier,
output_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_key_token

Direction: Input Type: String

A 64-byte string variable containing an external key token. The external key
token contains the key to be re-enciphered (translated).

input_KEK_key_identifier

Direction: Input/Output Type: String

Key Translate (CSNBKTR)

Chapter 4. Managing DES Cryptographic Keys 119

A 64-byte string variable containing the internal key token or the key label of an
internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to decipher the key. The internal key token must
contain a control vector that specifies an importer or IKEYXLAT key type. The
control vector for an importer key must have the XLATE bit set to 1.

output_KEK_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the internal key token or the key label of an
internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to encipher the key. The internal key token must
contain a control vector that specifies an exporter or OKEYXLAT key type. The
control vector for an exporter key must have the XLATE bit set to 1.

output_key_token

Direction: Output Type: String

A 64-byte string variable containing an external key token. The external key
token contains the re-enciphered key.

Restrictions
The caller must be in task mode, not in SRB mode.

Triple length DATA key tokens are not supported.

Usage Note
SAF will be invoked to check authorization to use the Key Translate service and
any key labels specified as input.

Multiple Clear Key Import (CSNBCKM)
This callable service encrypts a single-, double-, or triple-length DATA key under the
system master key.

Format

CALL CSNBCKM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_identifier_length,
key_identifier)

Key Translate (CSNBKTR)

120 z/OS V1R3.0 ICSF Application Programmer’s Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0 or 1.

rule_array

Direction: Input Type: String

Zero or one keyword that supplies control information to the callable service.
The keyword must be in 8 bytes of contiguous storage, left-justified and padded
on the right with blanks. Refer to Table 23 on page 122 for a list of keywords.

The keyword specifies the cryptographic algorithm. If no algorithm is specified,
the system default algorithm is used unless a double- or triple-length DATA key
is specified on a CDMF system. In this case, the resulting DATA token is
marked DES.

Multiple Clear Key Import (CSNBCKM)

Chapter 4. Managing DES Cryptographic Keys 121

Table 23. Keywords for Multiple Clear Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

CDMF The output key identifier is to be a CDMF token. For a DATA
key of length 16 or 24, you may not specify CDMF.

DES The output key identifier is to be a DES token.

clear_key_length

Direction: Input Type: Integer

The clear_key_length specifies the length of the clear key value to import. This
length must be 8, 16, or 24.

clear_key

Direction: Input Type: String

The clear_key specifies the clear key value to import.

key_identifier_length

Direction: Input/Output Type: Integer

The byte length of the key_identifier parameter. This must be at least 64 bytes.

key_identifier

Direction: Output Type: String

A 64-byte string that is to receive the internal key token. Appendix B, “Key
Token Formats” on page 365 describes the key tokens.

Usage Note
This service produces an internal DATA token with a control vector which is usable
on the Cryptographic Coprocessor Feature. If a valid internal token is supplied as
input to the service in the key_identifier field, that token’s control vector will not be
used in the encryption of the clear key value.

Multiple Secure Key Import (CSNBSKM)
Use this service to encipher a single-length, double-length, or triple-length key
under the system master key or an importer key-encrypting key. The clear key can
then be imported as any of the possible key types.

For double-length MAC keys, the importable form of the key token uses the MAC
data compatibility control vector.

Only control vectors and key types supported by the Cryptographic Coprocessor
Feature will be valid when importing a triple-length key.

ICSF routes the Multiple Secure Key Import request to a PCI Cryptographic
Coprocessor if the control vector of a supplied internal token cannot be processed

Multiple Clear Key Import (CSNBCKM)

122 z/OS V1R3.0 ICSF Application Programmer’s Guide

on the Cryptographic Coprocessor Feature, or if the key type is not valid for the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails.

Format

CALL CSNBSKM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_type,
key_form,
key_encrypting_key_identifier,
imported_key_identifier_length,
imported_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

Multiple Secure Key Import (CSNBSKM)

Chapter 4. Managing DES Cryptographic Keys 123

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, or 2.

rule_array

Direction: Input Type: String

Zero to two keywords that supply control information to the callable service.
Each keyword must be in 8 bytes of contiguous storage, left-justified and
padded on the right with blanks. The keywords are shown in Table 24.

The first keyword is the algorithm. If no algorithm is specified, the system
default algorithm is used. If no algorithm is specified on a CDMF only system
and either a double- or triple-length DATA key is specified, the token is marked
DES. The algorithm keyword applies only when the desired output token is of
key form OP and key type IMPORTER, EXPORTER, or DATA. For key form IM
or any other key type, specifying DES or CDMF causes an error.

The second keyword is optional and specifies that the output key token be
marked as an NOCV-KEK.

Table 24. Keywords for Multiple Secure Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

CDMF The output key identifier is to be a CDMF token. For a DATA
key of length 16 or 24, you may not specify CDMF.

DES The output key identifier is to be a DES token.

NOCV Choice (optional)

NOCV-KEK The output token is to be marked as an NOCV-KEK. This
keyword only applies if key form is OP and key type is
IMPORTER, EXPORTER or IMP-PKA. For key form IM or
any other key type, specifying NOCV-KEK causes an error.

clear_key_length

Direction: Input Type: Integer

The clear_key_length specifies the length of the clear key value to import. The
length must be 8, 16, or 24, but cannot exceed the maximum length for the
specified key type.

clear_key

Direction: Input Type: String

The clear_key specifies the clear key value to import.

key_type

Direction: Input Type: 8 Character String

The type of key you want to encipher under the master key or an importer key.
Specify an 8-byte field that must contain a keyword from the list shown in

Multiple Secure Key Import (CSNBSKM)

124 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 25 or the keyword TOKEN. For types with fewer than 8 characters, the
type should be padded on the right with blanks. If the key type is TOKEN, ICSF
determines the key type from the control vector (CV) field in the internal key
token provided in the imported_key_identifier parameter. If the control vector is
invalid on the Cryptographic Coprocessor Feature, the multiple secure key
import request will be routed to the PCI Cryptographic Coprocessor.

Table 25. Key Type Values for the Multiple Secure Key Import Callable Service

Key Type Meaning

DATA Data-encrypting key. Use this single-length, double-length,
or triple-length key to encipher and decipher data.

DATAM MAC generation key. May be specified explicitly as a key
type or through the TOKEN keyword.

DATAMV MAC verification key. May be specified explicitly as a key
type or through the TOKEN keyword.

DATAXLAT Data translation key. Use this single-length key to
reencipher text from one DATA key to another.

EXPORTER Exporter key-encrypting key. Use this double-length key to
convert any key (including a DATA key) from operational
form into exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable
service. This is a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length key to
convert a key from importable form into operational form.

IMP-PKA Limited authority importer key. Use this double-length key
to import an encrypted RSA or DSS private key.

IPINENC Input PIN-encrypting key. Use this double-length input key
to translate PINs. PIN blocks received from other nodes or
automatic teller machine (ATM) terminals are encrypted
under this type of key. These encrypted PIN blocks are
the input to the Encrypted PIN translate and Encrypted
PIN verify callable services.

MAC MAC generation key. Use this single-length key to
generate a message authentication code.

MACVER MAC verification key. Use this single-length key to verify a
message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate
callable service. This is a double-length key.

OPINENC Double-length output PIN-encrypting key. The output PIN
blocks from the Encrypted PIN translate, Encrypted PIN
generate, and Clear PIN generate alternate callable
services are encrypted under this type of key. If an
encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an
OPINENC key.

PINGEN PIN generation key. Use this double-length key to
generate PINs.

PINVER PIN verification key. Use this double-length key to verify
PINs.

key_form

Direction: Input Type: 4 Character String

Multiple Secure Key Import (CSNBSKM)

Chapter 4. Managing DES Cryptographic Keys 125

The key form you want to generate. Enter a 4-byte keyword specifying whether
the key should be enciphered under the master key (OP) or the importer
key-encrypting key (IM). The keyword must be left-justified and padded with
blanks. Valid keyword values are OP for encryption under the master key or IM
for encryption under the importer key-encrypting key. If you specify IM, you
must specify an importer key-encrypting key in the
key_encrypting_key_identifier parameter. For a key_type of IMP-PKA, this
service supports only the OP key_form.

key_encrypting_key_identifier

Direction: Input/Output Type: String

A 64-byte string internal key token or key label of an importer key-encrypting
key.

imported_key_identifier_length

Direction: Input/Output Type: Integer

The byte length of the imported_key_identifier parameter. This must be at least
64 bytes.

imported_key_identifier

Direction: Input/Output Type: String

A 64-byte string that is to receive the output key token. If OP is specified in the
key_form parameter, the service returns an internal key token. If IM is specified
in the key_form parameter, the service returns an external key token.
Appendix B, “Key Token Formats” on page 365 describes the key tokens.

Note that for a DATA key of length 16 or 24, no reference will be made to the
data encryption algorithm bits or to the system's default algorithm; the token will
be marked DES.

Usage Notes
To generate double-length MAC and MACVER keys in the importable form, the
ANSI system keys must be installed in the CKDS.

If the key to be imported is a triple-length key, only control vectors supported by the
Cryptographic Coprocessor Feature are valid.

PKA Decrypt (CSNDPKD)
This callable service accepts a PKCS 1.2-formatted, wrapped key value, along with
an RSA private key in either internal or external (clear) format. The external format
may be a modulus-exponent form or the Chinese Remainder form of the key with
clear key values. The service assumes that the sender used the corresponding
RSA public key to wrap the input key value. The service unwraps the key,
deformats it, and returns the deformatted value to the application in the clear.
Processing for this service is routed to the PCI Cryptographic Accelerator if a PCI

Multiple Secure Key Import (CSNBSKM)

126 z/OS V1R3.0 ICSF Application Programmer’s Guide

Cryptographic Accelerator is online and an external clear RSA token is supplied,
otherwise it is routed to the PCI Cryptographic Coprocessor or the Cryptographic
Coprocessor Feature.

If an external clear key token is used, then the key values are not encrypted under
any master key. PKA Decrypt with clear keys does not require any Master Keys to
be installed on the Cryptographic Coprocessor Features or the PCI Cryptographic
Coprocessors and PKA callable services do not have to be enabled.

The PKA decrypt callable service examines the RSA key specified in the
PKA_key_identifier parameter to determine how to route the request. If the modulus
bit length is less than 512 bits, or if the key is a X'02' form modulus-exponent
private key, ICSF routes the request to the Cryptographic Coprocessor Feature. If
the key is a X'08' form CRT private key or a retained private key, the service routes
the request to a PCI Cryptographic Coprocessor. In the case of a retained key, the
service routes the request to the specific PCI Cryptographic Coprocessor in which
the key is retained. If the key is a modulus-exponent form private key with a private
section ID of X'06', then the service routes the request as follows:

v Since the key must be a key-management key, if the KMMK is equal to the SMK
on the Cryptographic Coprocessor Feature, the PKA decrypt service uses load
balancing to route the request to either a Cryptographic Coprocessor Feature or
to an available PCI Cryptographic Coprocessor.

v If the KMMK is not equal to the SMK on the Cryptographic Coprocessor Feature,
the request must be processed on a PCI Cryptographic Coprocessor. If there is
no PCI Cryptographic Coprocessor online, the request will fail and issue a return
and reason code.

Format

CALL CSNDPKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
target_keyvalue_length,
target_keyvalue)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

PKA Decrypt (CSNDPKD)

Chapter 4. Managing DES Cryptographic Keys 127

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

The keyword that provides control information to the callable service. The
keyword is left-justified in an 8-byte field and padded on the right with blanks.

Table 26. Keywords for PKA Decrypt

Keyword Meaning

Recovery Method (required) specifies the method to use to recover the key value.

PKCS-1.2 RSA DSI PKCS #1 block type 02 will be used to recover the
key value.

PKA_enciphered_keyvalue_length

Direction: Input Type: integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 256 bytes.

PKA_enciphered_keyvalue

Direction: Input Type: String

PKA Decrypt (CSNDPKD)

128 z/OS V1R3.0 ICSF Application Programmer’s Guide

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue
parameter.

data_structure_length

Direction: Input Type: Integer

The value must be 0.

data_structure

Direction: Input Type: String

This field is currently ignored.

PKA_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier
is a key label, this field specifies the length of the label. The maximum size that
you can specify is 2500 bytes.

PKA_key_identifier

Direction: Input Type: String

An internal RSA private key token, the label of an internal RSA private key
token, or an external RSA private key token containing a clear RSA private key
in modulus-exponent or Chinese Remainder format. The corresponding public
key was used to wrap the key value.

target_keyvalue_length

Direction: Input/Output Type: Integer

The length of the target_keyvalue parameter. The maximum size that you can
specify is 256 bytes. On return, this field is updated with the actual length of
target_keyvalue.

target_keyvalue

Direction: Output Type: String

This field will contain the decrypted, deformatted key value.

Restrictions
The exponent of the RSA public key must be odd.

Caller must be in task mode and must not be in SRB mode.

Access control checking will not be performed in the PCI Cryptographic
Coprocessor when a clear external key token is supplied.

PKA Decrypt (CSNDPKD)

Chapter 4. Managing DES Cryptographic Keys 129

If a PKDS label name is not being supplied, then a value less than a blank (X'40')
must be supplied in the first byte of the parameter or else the service fails with
return code 8, reason code 11000.

Usage Notes
v The RSA private key must be enabled for key management functions.

v The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length
exceeds this limit. The service will fail with return code 12 and reason code
11020.

PKA Encrypt (CSNDPKE)
This callable service encrypts a supplied clear key value under an RSA public key.
The rule array keyword specifies the format of the key prior to encryption.

This service routes requests to the Cryptographic Coprocessor Feature unless the
modulus bit length of the key specified in the PKA_key_identifier is greater than
1024 bits.

Format

CALL CSNDPKE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
keyvalue_length,
keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

PKA Decrypt (CSNDPKD)

130 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

A keyword that provides control information to the callable service. The keyword
is left-justified in an 8-byte field and padded on the right with blanks.

Table 27. Keywords for PKA Encrypt

Keyword Meaning

Formatting Method (required) specifies the method to use to format the key value
prior to encryption.

PKCS-1.2 RSA DSI PKCS #1 block type 02 format will be used to
format the supplied key value.

ZERO-PAD The key value will be padded on the left with binary zeros to
the length of the PKA key modulus.

keyvalue_length

Direction: Input Type: Integer

The length of the keyvalue parameter. The maximum field size is 256 bytes.
The actual maximum size depends on the modulus length of PKA_key_identifier
and the formatting method you specify in the rule_array parameter. See Usage
Notes.

keyvalue

Direction: Input Type: String

This field contains the supplied clear key value to be encrypted under the
PKA_key_identifier.

PKA Encrypt (CSNDPKE)

Chapter 4. Managing DES Cryptographic Keys 131

data_structure_length

Direction: Input Type: Integer

This value must be 0.

data_structure

Direction: Input Type: String

This field is currently ignored.

PKA_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier
is a key label, this field specifies the length of the label. The maximum size that
you can specify is 2500 bytes.

PKA_key_identifier

Direction: Input Type: String

The RSA public or private key token or the label of the RSA public or private
key to be used to encrypt the supplied key value.

PKA_enciphered_keyvalue_length

Direction: Input/Output Type: integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 256 bytes. On return, this field is updated with the
actual length of PKA_enciphered_keyvalue.

PKA_enciphered_keyvalue

Direction: Output Type: String

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue
parameter.

Restrictions
The exponent of the RSA public key must be odd.

The caller must be in task mode and must not be in SRB mode.

Usage Notes
v For RSA DSI PKCS #1 formatting, the key value length must be at least 11 bytes

less than the modulus length of the RSA key.

PKA Encrypt (CSNDPKE)

132 z/OS V1R3.0 ICSF Application Programmer’s Guide

v The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length
exceeds this limit. The service will fail with return code 12 and reason code
11020.

v A new rule_array parameter, ZERO-PAD, has been added in OS/390 R2 R10
(APAR OW48132). The key value will be padded on the left with binary zeros to
the length of the PKA key modulus.

Prohibit Export (CSNBPEX)
The Prohibit Export service modifies an operational key so that it cannot be
exported. The Prohibit Export service does not support NOCV key-encrypting keys,
or DATA, MAC, or MACVER keys with standard control vectors (for example,
control vectors supported by the Cryptographic Coprocessor Feature).

ICSF routes the Prohibit Export request to a PCI Cryptographic Coprocessor for
processing. If no PCI Cryptographic Coprocessor is online, the request fails.

Format

CALL CSNBPEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

PKA Encrypt (CSNDPKE)

Chapter 4. Managing DES Cryptographic Keys 133

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the internal key token to be modified. The
returned key_identifier will be encrypted under the current master key.

Restriction
The caller must be in task mode, not in SRB mode.

Usage Note
SAF will be invoked to check authorization to use the Prohibit Export service.

Prohibit Export Extended (CSNBPEXX)
Use the prohibit export extended callable service to change the external token of a
cryptographic key in exportable form so that it can be imported at the receiver node
and is non-exportable from that node. You cannot prohibit export of DATA keys.

The inputs are an external token of the key to change in the source_key_token
parameter and the label or internal token of the exporter key-encrypting key in the
kek_key_identifier parameter.

CSNBPEXX is a variation of the prohibit export service CSNBPEX, which supports
changing an internal token.

Format

CALL CSNBPEXX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
kek_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Prohibit Export (CSNBPEX)

134 z/OS V1R3.0 ICSF Application Programmer’s Guide

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_token

Direction: Input/Output Type: String

A 64-byte string of an external token of a key to change. It is in exportable form.

kek_key_identifier

Direction: Input/Output Type: Integer

A 64-byte string of an internal token or label of the exporter KEK used to
encrypt the key contained in the external token specified in the previous
parameter.

Random Number Generate (CSNBRNG)
The callable service uses the cryptographic feature to generate a random number.
The foundation for the random number generator is a time variant input with a very
low probability of recycling.

Format

CALL CSNBRNG(
return_code,
reason_code,
exit_data_length,
exit_data,
form,
random_number)

Prohibit Export Extended (CSNBPEXX)

Chapter 4. Managing DES Cryptographic Keys 135

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

form

Direction: Input Type: Character string

The 8-byte keyword that defines the characteristics of the random number
should be left-justify and pad on the right with blanks. The keywords are listed
in Table 28.

Table 28. Keywords for the Form Parameter

Keyword Meaning

EVEN Generate a 64-bit random number with even parity in each
byte.

ODD Generate a 64-bit random number with odd parity in each
byte.

RANDOM Generate a 64-bit random number.

Parity is calculated on the 7 high-order bits in each byte and is presented in the
low-order bit in the byte.

random_number

Direction: Output Type: String

Prohibit Export Extended (CSNBPEXX)

136 z/OS V1R3.0 ICSF Application Programmer’s Guide

The generated number returned by the callable service in an 8-byte variable.

Secure Key Import (CSNBSKI)
Use the secure key import callable service to encipher a single-length or
double-length clear key under the system master key or under an importer
key-encrypting key. The clear key can then be imported as any of the possible key
types. This service does not adjust key parity.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 9.

You can import DATA keys or KEKs whose data encryption algorithm bits indicate
the encryption algorithm. DATA keys can be marked CDMF or DES. This service
marks the imported DATA key token according to the system's default encryption
algorithm, unless token copying overrides this. KEKs can be marked CDMF DES, or
SYS-ENC. They are marked SYS-ENC unless token-copying overrides this. See the
key_identifier parameter in this service and the key token build callable service
(“Key Token Build (CSNBKTB)” on page 109) for more information.

Note: Marking of data encryption algorithm bits and token copying are performed
only if the service is processed on the Cryptographic Coprocessor Feature.

To import double-length and triple-length DATA keys, or double-length MAC or
MACVER keys, use the multiple secure key import (CSNBSKM) callable service.
See “Multiple Secure Key Import (CSNBSKM)” on page 122.

ICSF routes the Secure Key Import request to a PCI Cryptographic Coprocessor if
the control vector cannot be processed on the Cryptographic Coprocessor Feature.
If no PCI Cryptographic Coprocessor is online in this case, the request fails.

Format

CALL CSNBSKI(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_type,
key_form,
importer_key_identifier,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

Prohibit Export Extended (CSNBPEXX)

Chapter 4. Managing DES Cryptographic Keys 137

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The clear key to be enciphered. Specify a 16-byte string (clear key value). For
single-length keys, the value must be left-justified and padded with zeros. For
effective single-length keys, the value of the right half must equal the value of
the left half. For double-length keys, specify the left and right key values.

key_type

Direction: Input Type: Character string

The type of key you want to encipher under the master key or an importer key.
Specify an 8-byte field that must contain a keyword from the list shown in
Table 29 or the keyword TOKEN. If the key type is TOKEN, ICSF determines
the key type from the CV in the key_identifier parameter. If the control vector is
invalid on the Cryptographic Coprocessor Feature, the secure key import
request will be routed to the PCI Cryptographic Coprocessor.

Table 29. Key Type Values for the Secure Key Import Callable Service

Key Type Meaning

DATA Data-encrypting key. Use this single-length, double-length,
or triple-length key to encipher and decipher data.

DATAXLAT Data translation key. Use this single-length key to
reencipher text from one DATA key to another.

EXPORTER Exporter key-encrypting key. Use this double-length key to
convert any key (including a DATA key) from operational
form into exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable
service. This is a double-length key.

Secure Key Import (CSNBSKI)

138 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 29. Key Type Values for the Secure Key Import Callable Service (continued)

Key Type Meaning

IMPORTER Importer key-encrypting key. Use this double-length key to
convert a key from importable form into operational form.

IMP-PKA Limited authority importer key. Use this double-length key
to import an encrypted RSA or DSS private key.

IPINENC Input PIN-encrypting key. Use this double-length input key
to translate PINs. PIN blocks received from other nodes or
automatic teller machine (ATM) terminals are encrypted
under this type of key. These encrypted PIN blocks are
the input to the Encrypted PIN translate and Encrypted
PIN verify callable services.

MAC MAC generation key. Use this single-length key to
generate a message authentication code.

MACVER MAC verification key. Use this single-length key to verify a
message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate
callable service. This is a double-length key.

OPINENC Double-length output PIN-encrypting key. The output PIN
blocks from the Encrypted PIN translate, Encrypted PIN
generate, and Clear PIN generate alternate callable
services are encrypted under this type of key. If an
encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an
OPINENC key.

PINGEN PIN generation key. Use this double-length key to
generate PINs.

PINVER PIN verification key. Use this double-length key to verify
PINs.

key_form

Direction: Input Type: Character string

The key form you want to generate. Enter a 4-byte keyword specifying whether
the key should be enciphered under the master key (OP) or the importer
key-encrypting key (IM). The keyword must be left-justified and padded with
blanks. Valid keyword values are OP for encryption under the master key or IM
for encryption under the importer key-encrypting key. If you specify IM, you
must specify an importer key-encrypting key in the importer_key_identifier
parameter. For a key_type of IMP-PKA, this service supports only the OP
key_form.

importer_key_identifier

Direction: Input/Output Type: String

The importer key-encrypting key under which you want to encrypt the clear key.
Specify either a 64-byte string of the internal key format or a key label. If you
specify IM for the key_form parameter, the importer_key_identifier parameter is
required.

Secure Key Import (CSNBSKI)

Chapter 4. Managing DES Cryptographic Keys 139

key_identifier

Direction: Input/Output Type: String

The generated encrypted key. The parameter is a 64-byte string. The callable
service returns either an internal key token if you encrypted the clear key under
the master key (key_form was OP); or an external key token if you encrypted
the clear key under the importer key-encrypting key (key_form was IM).

If the imported key_type is IMPORTER or EXPORTER and the key_form is OP,
the key_identifier parameter changes direction to both input and output. If the
application passes a valid internal key token for an IMPORTER or EXPORTER
key in this parameter, the NOCV bit is propagated to the imported key token.

Note: Propagation of the NOCV bit is performed only if the service is
processed on the Cryptographic Coprocessor Feature.

If the key_type is DATA, IMPORTER, or EXPORTER and the application
passes a valid internal key token for a DATA, IMPORTER, or EXPORTER key
in the key_identifier, this service propagates the data encryption algorithm bits
to the imported key token. Propagation of token markings is only relevant when
this service is processed on the Cryptographic Coprocessor Feature.

The secure key import service does not adjust key parity.

Symmetric Key Export (CSNDSYX)
Use the symmetric key export callable service to transfer an application-supplied
symmetric key (a DATA key) from encryption under the DES host master key to
encryption under an application-supplied RSA public key. The application-supplied
DATA key must be an ICSF DES internal key token or the label of such a token in
the CKDS. The symmetric key import callable service can import the PKA-encrypted
form at the receiving node.

This service requires the enhanced system keys to be present in the CKDS.

ICSF routes this service to a PCI Cryptographic Coprocessor if one is available on
your server. This service will not be routed to a PCI Cryptographic Coprocessor if
the modulus bit length of the RSA public key is less than 512 bits.

Format

CALL CSNDSYX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
DATA_key_identifier_length,
DATA_key_identifier,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
RSA_enciphered_key_length,
RSA_enciphered_key)

Secure Key Import (CSNBSKI)

140 z/OS V1R3.0 ICSF Application Programmer’s Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. Value
must be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Table 30 lists
the keywords. Each keyword is left-justified in 8-byte fields and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 30. Keywords for Symmetric Key Export Control Information

Keyword Meaning

Recovery Method (required)

PKCSOAEP Specifies using the method found in RSA DSI PKCS
#1V2 OAEP.

PKCS–1.2 Specifies using the method found in RSA DSI PKCS #1
block type 02 to recover the symmetric key.

Symmetric Key Export (CSNDSYX)

Chapter 4. Managing DES Cryptographic Keys 141

||
|

Table 30. Keywords for Symmetric Key Export Control Information (continued)

Keyword Meaning

ZERO-PAD The clear key is right-justified in the field provided, and
the field is padded to the left with zeroes up to the size of
the RSA encryption block (which is the modulus length).

DATA_key_identifier_length

Direction: Input Type: Integer

The length of the DATA_key_identifier parameter. The minimum size is 64
bytes. The maximum size is 128 bytes.

DATA_key_identifier

Direction: Input/Output Type: Integer

The label or internal token of a DATA key to export for encryption under the
supplied RSA public key. This service exports a DATA key of the same length
as the key specified in this parameter.

RSA_public_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_public_key_identifier parameter. The maximum size is
2500 bytes.

RSA_public_key_identifier

Direction: Input Type: String

A PKA public key token or label of the key to protect the exported symmetric
key.

RSA_enciphered_key_length

Direction: Input/Output Type: Integer

The length of the RSA_enciphered_key parameter. This is updated with the
actual length of the RSA_enciphered_key generated. The maximum size is 256
bytes.

RSA_enciphered_key

Direction: Output Type: String

This field contains the RSA_enciphered key, protected by the public key
specified in the RSA_public_key_identifier field.

Symmetric Key Export (CSNDSYX)

142 z/OS V1R3.0 ICSF Application Programmer’s Guide

Restrictions
The enhanced system keys must be present in the CKDS.

Caller must be task mode and not in SRB mode.

Use of PKCSOAEP requires the PCI Cryptographic Coprocessor.

Usage Notes
This service requires that the enhanced system keys be installed in the CKDS.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit. The service will fail with return code 12 and reason code 11020.

Symmetric Key Generate (CSNDSYG)
Use the symmetric key generate callable service to generate a symmetric key (a
DATA key) and return the key in two forms: DES-encrypted and encrypted under an
RSA public key. (There are two types of PKA public key tokens: RSA and DSS. This
callable service uses only the RSA type.) The DES encryption may be in the form of
an internal token encrypted under the host DES master Key or in the external form
encrypted under a key-encrypting key. You can import the PKA-encrypted form by
using the symmetric key import service at the receiving node. Also use the
symmetric key generate callable service to generate any importer or exporter
key-encrypting key encrypted under a PKA96 RSA public key according to the
PKA92 formatting structure. See “PKA92 Key Format and Encryption Process” on
page 439 for more details about PKA92 formatting.

The generated internal DATA key token is marked according to the system default
algorithm.

Note: Token marking is only performed if the service is processed on the
Cryptographic Coprocessor Feature.

ICSF routes this service to a PCI Cryptographic Coprocessor if one is available on
your server. This service will not be routed to a PCI Cryptographic Coprocessor if
the modulus bit length of the RSA public key is less than 512 bits.

Format

CALL CSNDSYG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_encrypting_key_identifier,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
DES_enciphered_key_token_length,
DES_enciphered_key_token,
RSA_enciphered_key_length,
RSA_enciphered_key)

Symmetric Key Export (CSNDSYX)

Chapter 4. Managing DES Cryptographic Keys 143

|

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Table 31 lists
the keywords. The recovery method is the method to use to recover the
symmetric key. Each keyword is left-justified in an 8-byte field and padded on
the right with blanks. All keywords must be in contiguous storage.

Table 31. Keywords for Symmetric Key Generate Control Information

Keyword Meaning

Recovery Method (required)

PKA92 Specifies the key-encrypting key is to be encrypted under
a PKA96 RSA public key according to the PKA92
formatting structure.

Symmetric Key Generate (CSNDSYG)

144 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|

Table 31. Keywords for Symmetric Key Generate Control Information (continued)

Keyword Meaning

PKCSOAEP Specifies using the method found in RSA DSI PKCS #1V2
OAEP.

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02.

ZERO-PAD The clear key is right-justified in the field provided, and the
field is padded to the left with zeroes up to the size of the
RSA encryption block (which is the modulus length).

Form of the DES_Enciphered_Key_Token (optional) not valid with PKA92

EX The DES enciphered key is enciphered by an EXPORTER
key that is provided through the
key_encrypting_key_identifier parameter.

IM The DES enciphered key is enciphered by an IMPORTER
key that is provided through the
key_encrypting_key_identifier parameter. This form
requires the enabling of Special Secure Mode. Special
Secure Mode is not required if a PCI Cryptographic
Coprocessor is available and the modulus bit length is
greater than or equal to 512 bits.

OP The DES enciphered key is enciphered by the master key.
The key_encrypting_key_identifier parameter is ignored.
This is the default.

DES Key Length (optional)

DOUBLE Generates a double-length DES key.

KEYLN8 Generates a single-length DES key. This is the default.

KEYLN16 Generates a double-length DES DATA key.

KEYLN24 Generates a triple-length DES DATA key.

SINGLE Generates a single-length DES key.

SINGLE-R Generates a key-encrypting key that has equal left and
right halves allowing it to perform as a single-length key.
Valid only for the recovery method of PKA92.

key_encrypting_key_identifier

Direction: Input/Output Type: String

The label or internal token of a key-encrypting key. If the rule_array specifies
IM, this DES key must be an IMPORTER. If the rule_array specifies EX, this
DES key must be an EXPORTER.

RSA_public_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_public_key_identifier parameter. If the
RSA_public_key_identifier parameter is a label, this parameter specifies the
length of the label. The maximum size is 2500 bytes.

RSA_public_key_identifier

Direction: Input Type: String

Symmetric Key Generate (CSNDSYG)

Chapter 4. Managing DES Cryptographic Keys 145

||
|

|

The token, or label, of the RSA public key to be used for protecting the
generated symmetric key.

DES_enciphered_key_token_length

Direction: Input/Output Type: Integer

The length of the DES_enciphered_key_token. This field is updated with the
actual length of the DES_enciphered_key_token that is generated. The
minimum size is 64 bytes. The maximum size is 128 bytes.

DES_enciphered_key_token

Direction: Input/Output Type: String

This parameter contains the generated DES-enciphered DATA key in the form
of an internal or external token, depending on rule_array specification.

RSA_enciphered_key_length

Direction: Input/Output Type: Integer

The length of the RSA_enciphered_key parameter. This service updates this
with the actual length of the RSA_enciphered_key it generates. The maximum
size is 256 bytes.

RSA_enciphered_key

Direction: Input/Output Type: String

This field contains the RSA enciphered key, which the public key specified in
the RSA_public_key_identifier field protects. If you specify PKA92, on input
specify an internal (operational) DES key token.

Restrictions
If you specify IM in the rule_array, you must enable Special Secure Mode.

Special Secure Mode is not required if a PCI Cryptographic Coprocessor is
available and the modulus bit length of the RSA public key is greater than or equal
to 512 bits.

The caller must be in task mode and not in SRB mode.

Use of PKA92 requires the PCI Cryptographic Coprocessor.

Use of PKCSOAEP requires the PCI Cryptographic Coprocessor.

Usage Notes
The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit. The service will fail with return code 12 and reason code 11020.

Symmetric Key Generate (CSNDSYG)

146 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

Use the PKA92 key-formatting method to generate a key-encrypting key. The
service enciphers one key copy using the key encipherment technique employed in
the IBM Transaction Security System (TSS) 4753, 4755, and AS/400 cryptographic
product PKA92 implementations (see “PKA92 Key Format and Encryption Process”
on page 439). The control vector for the RSA-enciphered copy of the key is taken
from an internal (operational) DES key token that must be present on input in the
RSA_enciphered_key variable. Only key-encrypting keys that conform to the rules
for an OPEX case under the key generate service are permitted. The control vector
for the local key is taken from a DES key token that must be present on input in the
DES_enciphered_key_token variable. The control vector for one key copy must be
from the EXPORTER class while the control vector for the other key copy must be
from the IMPORTER class.

Symmetric Key Import (CSNDSYI)
Use the symmetric key import callable service to import a symmetric (DES) DATA
key enciphered under an RSA public key. (There are two types of PKA private key
tokens: RSA and DSS. This callable service uses only the RSA type.) It returns the
key in operational form, enciphered under the master key. It marks the key
according to the system's default encryption algorithm, unless token copying
overrides this. Marking of data encryption algorithm bits and token copying are only
performed if the service is executed on the Cryptographic Coprocessor Feature.
The symmetric key import service also supports import of a PKA92-formatted DES
key-encrypting key under a PKA96 RSA public key.

The symmetric key import callable service examines the RSA key specified in the
RSA_private_key_identifier parameter to determine how to route the request. If the
key is a modulus-exponent form private key with a private section ID of X'02', ICSF
routes the request to the Cryptographic Coprocessor Feature. If the token modulus
bit length is less than 512, the request will also be routed to the Cryptographic
Coprocessor Feature. In either of these cases, if the PKA92 recovery method is
specified, the request will fail. If the key is a modulus-exponent form private key
with a private section ID of X'06', a CRT form private key with a section ID of X'08',
or a retained private key, ICSF routes the request to a PCI Cryptographic
Coprocessor. In the case of a retained key, the service routes the request to the
specific PCI Cryptographic Coprocessor in which the key is retained. If there is no
PCI Cryptographic Coprocessor online:

v and the RSA_private_key_identifier is a retained private key or a CRT form
private key, the request will fail and a return and reason code will be issued

v and the KMMK is equal to the SMK on the Cryptographic Coprocessor Feature,
ICSF routes the request to a Cryptographic Coprocessor Feature

v and the KMMK is not equal to the SMK on the Cryptographic Coprocessor
Feature, the request must be processed on a PCI Cryptographic Coprocessor.
Since there is no PCI Cryptographic Coprocessor online, the request will fail and
a return code and reason code will be issued.

v and the PKA92 recovery method is specified, the request will fail.

Symmetric Key Generate (CSNDSYG)

Chapter 4. Managing DES Cryptographic Keys 147

|
|
|
|
|
|
|
|
|

Format

CALL CSNDSYI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_enciphered_key_length,
RSA_enciphered_key,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1.

Symmetric Key Import (CSNDSYI)

148 z/OS V1R3.0 ICSF Application Programmer’s Guide

rule_array

Direction: Input Type: String

The keyword that provides control information to the callable service. Table 32
provides a list. The recovery method is the method to use to recover the
symmetric key. The keyword is left-justified in an 8-byte field and padded on the
right with blanks.

Table 32. Keywords for Symmetric Key Import Control Information

Keyword Meaning

Recovery Method (required)

PKA92 Specifies the key-encrypting key is encrypted under a
PKA96 RSA public key according to the PKA92
formatting structure.

PKCSOAEP Specifies using the method found in RSA DSI PKCS
#1V2 OAEP.

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02.

ZERO-PAD The clear key is right-justified in the field provided, and
the field is padded to the left with zeroes up to the size
of the RSA encryption block (which is the modulus
length).

RSA_enciphered_key_length

Direction: Input Type: integer

The length of the RSA_enciphered_key parameter. The maximum size is 256
bytes.

RSA_enciphered_key

Direction: Input Type: String

The key to import, protected under an RSA public key. The encrypted key is in
the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the encrypted key. This string is left-justified
within the RSA_enciphered_key parameter.

RSA_private_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_private_key_identifier parameter. When the
RSA_private_key_identifier parameter is a key label, this field specifies the
length of the label. The maximum size is 2500 bytes.

RSA_private_key_identifier

Direction: Input Type: String

Symmetric Key Import (CSNDSYI)

Chapter 4. Managing DES Cryptographic Keys 149

||
|

An internal RSA private key token or label whose corresponding public key
protects the symmetric key.

target_key_identifier_length

Direction: Input/Output Type: Integer

The length of the target_key_identifier parameter. This field is updated with the
actual length of the target_key_identifier that is generated. The size must be 64
bytes.

target_key_identifier

Direction: Input/Output Type: String

This field contains the internal token of the imported symmetric key. It is marked
according to the system default algorithm, CDMF or DES. If you supply as input
a valid internal token of an 8-byte DATA key, this service propagates the
algorithm markings from the supplied token to the imported DATA key. If the key
length is 16 or 24, however, the key token is marked as DES. Propagation of
token markings is only relevant when this service is processed on the
Cryptographic Coprocessor Feature.

Except for PKA92 processing, this service produces a DATA key token with a
key of the same length as that contained in the imported token.

Restrictions
The exponent of the RSA public key must be odd.

The caller must be in task mode and not in SRB mode.

Use of PKA92 requires the optional PCI Cryptographic Coprocessor.

Use of PKCSOAEP requires the PCI Cryptographic Coprocessor.

Usage Notes
The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit. The service will fail with return code 12 and reason code 11020.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

During initialization of a PCI Cryptographic Coprocessor, an Environment
Identification, or EID, of zero will be set in the coprocessor. This will be interpreted
by the PKA Symmetric Key Import service to mean that environment identification
checking is to be bypassed. Thus it is possible on a OS/390 system for a
key-encrypting key RSA-enciphered at a node (EID) to be imported at the same
node.

Symmetric Key Import (CSNDSYI)

150 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

Transform CDMF Key (CSNBTCK)
Use the transform CDMF key callable service to change a CDMF DATA key in an
internal or external token to a transformed shortened DES key. You can also use
the key label of a CKDS record as input. This callable service is implemented on
S/390 Enterprise Servers and S/390 Multiprise. The Cryptographic Coprocessor
Feature on S/390 Enterprise Servers and S/390 Multiprise is configured as either
CDMF or DES-CDMF. This callable service ignores the input internal DATA token
markings, and it marks the output internal token for use in the DES.

If the input DATA key is in an external token, the operational KEK must be marked
as DES or SYS-ENC. The service fails for an external DATA key encrypted under a
KEK that is marked as CDMF.

Format

CALL CSNBTCK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier,
kek_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

Transform CDMF Key (CSNBTCK)

Chapter 4. Managing DES Cryptographic Keys 151

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 0.

rule_array

Direction: Input Type: String

Currently no rule_array keywords are defined for this service, but you still must
specify this parameter.

source_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal token, external token or key label that contains
the DATA key to transform. Token markings on this key token are ignored.

kek_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal token or a key label of a key encrypting key
under which the source_key_identifier is encrypted.

Note: If you supply a label for this parameter, the label must be unique in the
CKDS.

target_key_identifier

Direction: Output Type: String

A 64-byte string where the internal token or external token of the transformed
shortened DES key is returned. The internal token is marked as DES.

Restrictions
This service is available on S/390 Enterprise Servers and S/390 Multiprise with
Cryptographic Coprocessor Features. These systems may be configured as either
CDMF or DES-CDMF.

Usage Notes
This service transforms a CDMF DATA key to a transformed shortened DES DATA
key to allow interoperability to a DES-only capable system. The algorithm is
described in Transform CDMF Key Algorithm.

Transform CDMF Key (CSNBTCK)

152 z/OS V1R3.0 ICSF Application Programmer’s Guide

User Derived Key (CSFUDK)
Use the user derived key callable service to generate a single-length or
double-length MAC key or to update an existing user derived key. A single-length
MAC key can be used to compute a MAC following the ANSI X9.9, ANSI X9.19, or
the Europay, MasterCard and VISA (EMV) Specification MAC processing rules. A
double-length MAC key can be used to compute a MAC following either the ANSI
X9.19 optional double MAC processing rule or the EMV Specification MAC
processing rule.

This service updates an existing user derived key by XORing it with data you
supply in the data_array parameter. This is called SESSION MAC key generation
by VISA.

This service adjusts the user derived key or SESSION MAC key to odd parity. The
parity of the supplied derivation key is not tested.

Format

CALL CSFUDK(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
derivation_key_identifier,
source_key_identifier,
data_array,
generated_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

User Derived Key (CSFUDK)

Chapter 4. Managing DES Cryptographic Keys 153

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: String

The 8-byte keyword of ’MAC ’ or ’MACD ’ that specifies the key type to be
generated. The keyword must be left-justified and padded on the right with
blanks. MAC specifies an 8-byte, single-length MAC key which is used in the
ANSI X9.9-1 or the ANSI X9.19 basic MAC processing rules. MACD specifies a
16-byte, double-length internal MAC key that uses the single-length control
vector for both the left and right half of the key (MAC { MAC). The
double-length MAC key is used in the ANSI X9.19 optional double-key MAC
processing rules. The keyword ’TOKEN ’ is also accepted. If you specify
TOKEN with a rule_array of VISA or NOFORMAT, the key type is determined by
the valid internal token of the single-length or double-length MAC key in the
generated_key_identifier parameter. If you specify TOKEN with a rule_array of
SESS-MAC, the key type is determined by the valid internal token of the
single-length or double-length MAC key in the source_key_identifier.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value must
be 1.

rule_array

Direction: Input Type: Character string

The process rule for the user derived key in an 8-byte field. The keywords must
be in 8 bytes of contiguous storage, left-justified and padded on the right with
blanks. For example,
’VISA ’

The keywords are shown in Table 33.

Table 33. Keywords for User Derived Key Control Information

Keyword Meaning

User Derived Key Process Rules (required)

NOFORMAT For generating a user derived key with no formatting
done on the array before encryption under the
derivation_key_identifier.

User Derived Key (CSFUDK)

154 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 33. Keywords for User Derived Key Control Information (continued)

Keyword Meaning

SESS-MAC To update an existing user derived key supplied in the
source_key_ identifier parameter with data provided in
the data_array parameter.

VISA For generating a user derived key using the VISA
algorithm to format the data array input before
encryption under the derivation_key_identifier. For
guidance information refer to the VISA Integrated
Circuit Card Specification, V1.3 Aug 31, 1996.

derivation_key_identifier

Direction: Input/Output Type: String

For a rule_array value of VISA or NOFORMAT, this is a 64-byte key label or
internal key token of the derivation key used to generate the user derived key.
The key must be an EXPORTER key type. For any other keyword, this field
must be a null token.

source_key_identifier

Direction: Input/Output Type: String

For a rule_array value of SESS-MAC, this is a 64-byte internal token of a
single-length or double-length MAC key. For any other keyword, this field must
be a null token.

data_array

Direction: Input Type: String

Two 16-byte data elements required by the corresponding rule_array and
key_type parameters. The data array consists of two 16-byte hexadecimal
character fields whose specification depends on the process rule and key type.
VISA requires only one 16-byte hexadecimal character input. Both NOFORMAT
and SESS-MAC require one 16-byte input for a key type of MAC and two
16-byte inputs for a key type of MACD. If only one 16-byte field is required,
then the rest of the data array is ignored by the callable service.

generated_key_identifier

Direction: Input/Output Type: String

The 64-byte internal token of the generated single-length or double-length MAC
key. This is an input field only if TOKEN is specified for key_type.

Usage Note
This service requires that the ANSI system keys be installed in the CKDS.

User Derived Key (CSFUDK)

Chapter 4. Managing DES Cryptographic Keys 155

User Derived Key (CSFUDK)

156 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 5. Protecting Data

Use ICSF to protect sensitive data stored on your system, sent between systems,
or stored off your system on magnetic tape. To protect data, encipher it under a key.
When you want to read the data, decipher it from ciphertext to plaintext form.

ICSF provides encipher and decipher callable services to perform these functions. If
you use a key to encipher data, you must use the same key to decipher the data.
To use clear keys directly, ICSF provides encode and decode callable services.
These services encipher and decipher with clear keys. You can use clear keys
indirectly by first using the clear key import callable service, and then using the
encipher and decipher callable services.

This chapter describes the following services:
v “Ciphertext Translate (CSNBCTT and CSNBCTT1)” on page 159
v “Decipher (CSNBDEC and CSNBDEC1)” on page 162
v “Decode (CSNBDCO)” on page 168
v “Encipher (CSNBENC and CSNBENC1)” on page 170
v “Encode (CSNBECO)” on page 177
v “Symmetric Key Decipher (CSNBSYD)” on page 178
v “Symmetric Key Encipher (CSNBSYE)” on page 183

Modes of Operation
To encipher or decipher data or keys, ICSF uses either the U.S. National Institute of
Standards and Technology (NIST) Data Encryption Standard (DES) algorithm or the
Commercial Data Masking Facility (CDMF). The DES algorithm is documented in
Federal Information Processing Standard #46. CDMF provides DES cryptography
using an effectively shortened DATA key. See “System Encryption Algorithm” on
page 26 for more information.

To encipher or decipher data, ICSF also uses the U.S. National Institute of
Standards and Technology (NIST) Advanced Encryption Standard (AES) algorithm.
The AES algorithm is documented in a draft Federal Information Processing
Standard.

ICSF enciphers and deciphers using the following modes of operation:

v Cipher block chaining (CBC)

v Electronic code book (ECB)

Cipher Block Chaining (CBC) Mode
The CBC mode uses an initial chaining vector (ICV) in its processing. The CBC
mode only processes blocks of data in exact multiples of eight. The ICV is exclusive
ORed with the first 8 bytes of plaintext before the encryption step; the 8-byte block
of ciphertext just produced is exclusive ORed with the next 8-byte block of plaintext,
and so on. You must use the same ICV to decipher the data. This disguises any
pattern that may exist in the plaintext. ICSF uses the CBC encipherment mode for
encrypting and decrypting data using the encipher and decipher callable services.

Electronic Code Book (ECB) Mode
In the ECB mode, each 64-bit block of plaintext is separately enciphered and each
block of the ciphertext is separately deciphered. In other words, the encipherment

© Copyright IBM Corp. 1997, 2002 157

|
|

|
|
|
|

or decipherment of a block is totally independent of other blocks. ICSF uses the
ECB encipherment mode for enciphering and deciphering data with clear keys using
the encode and decode callable services.

ICSF does not support ECB encipherment mode on CDMF-only systems.

Triple DES Encryption
Triple-DES encryption uses a triple-length DATA key comprised of three 8-byte DES
keys to encipher 8 bytes of data using the following method:

v Encipher the data using the first key

v Decipher the result using the second key

v Encipher the second result using the third key

The procedure is reversed to decipher data that has been triple-DES enciphered:

v Decipher the data using the third key

v Encipher the result using the second key

v Decipher the second result using the first key

ICSF uses the triple-DES encryption in the CBC encipherment mode.

A variation of the triple DES algorithm supports the use of a double-length DATA
key comprised of two 8-byte DATA keys. In this method, the first 8-byte key is
reused in the last encipherment step.

Triple-DES encryption is available only on the S/390 G4 Enterprise Server (with LIC
driver 98), or above. Due to export regulations, triple-DES encryption may not be
available on your processor.

Processing Rules
ICSF handles this chaining for each 8-byte block of data, from the first block until
the last complete 8-byte block of data in each encipher call. There are different
types of processing rules you can choose for cipher block chaining. You choose the
type of processing rule that the callable service should use for CBC mode:

v Cipher block chaining (CBC). In exact multiples of 8 bytes.

v Cryptographic Unit Support Program (CUSP). Not necessarily in exact
multiples of 8 bytes. The ciphertext is the same length of the plaintext.

v Information Protection System (IPS). Not necessarily in exact multiples of 8
bytes. The ciphertext is the same length of the plaintext.

v ANSI X9.23. Not necessarily in exact multiples of 8 bytes. This processing rule
pads the plaintext so that the ciphertext produced is in exact multiples of 8 bytes.

v IBM 4700. Not necessarily in exact multiples of 8 bytes. This processing rule
pads the plaintext so that the ciphertext produced is in exact multiples of 8 bytes.

Cipher Processing Rules describes the cipher processing rules in detail.

The resulting chaining value, after an encipher call, is known as an output chaining
vector (OCV). When there are multiple cipher requests, the application can pass the
output chaining vector from the previous encipher call as the ICV in the next
encipher call. This produces chaining between successive calls, which is known as
record chaining. ICSF provides the ICV selection keyword CONTINUE in the
rule_array parameter that an application can use to select record chaining with the
CBC, IPS, and CUSP processing rules.

158 z/OS V1R3.0 ICSF Application Programmer’s Guide

A chaining vector allows you to simulate CUSP or IPS record chaining by
calculating the correct OCV. To do either the CUSP or IPS method of record
chaining in the encipher and decipher callable services, the OCV from one service
invocation is passed as the initialization vector to the next invocation. An OCV is
produced for all processing rules. The OCV is the leftmost 8 bytes of the
chaining_vector parameter.

Ciphertext Translate (CSNBCTT and CSNBCTT1)
ICSF provides a ciphertext translate callable service on DES-capable systems. The
callable service deciphers encrypted data (ciphertext) under one data translation
key and reenciphers it under another data translation key without having the data
appear in the clear outside the Integrated Cryptographic Feature. ICSF uses the
data translation key as either the input or the output data transport key. Such a
function is useful in a multiple node network, where sensitive data is passed
through multiple nodes before it reaches its final destination.

“Using the Ciphertext Translate Callable Service” on page 39 provides some tips on
using the callable service.

Use the ciphertext translate callable service to decipher text under an “input” key
and then to encipher the text under an “output” key. The callable service uses the
cipher block chaining (CBC) mode of the DES. This service is available only on a
DES-capable system.

Choosing Between CSNBCTT and CSNBCTT1
CSNBCTT and CSNBCTT1 provide identical functions. When choosing the service
to use, consider the following:

v CSNBCTT requires the input text and output text to reside in the caller’s primary
address space. Also, a program using CSNBCTT adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBCTT1 allows the input text and output text to reside either in the caller’s
primary address space or in a data space. This allows you to translate more data
with one call. However, a program using CSNBCTT1 does not adhere to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface, and may need to be modified before it can run with other cryptographic
products that follow this programming interface.

For CSNBCTT1, text_id_in and text_id_out are access list entry token (ALET)
parameters of the data spaces containing the input text and output text.

Format

CALL CSNBCTT(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_in,
key_identifier_out,
text_length,
text_in,
initialization_vector_in,
initialization_vector_out,
text_out)

Chapter 5. Protecting Data 159

CALL CSNBCTT1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_in,
key_identifier_out,
text_length,
text_in,
initialization_vector_in,
initialization_vector_out,
text_out,
text_id_in,
text_id_out)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier_in

Direction: Input/Output Type: String

The 64-byte string of the internal key token containing the data translation
(DATAXLAT) key, or the label of the CKDS record containing the DATAXLAT
key used to encipher the input string.

Ciphertext Translate (CSNBCTT and CSNBCTT1)

160 z/OS V1R3.0 ICSF Application Programmer’s Guide

key_identifier_out

Direction: Input/Output Type: String

The 64-byte string of an internal key token containing the DATAXLAT key, or the
label of the CKDS record containing the DATAXLAT key, used to reencipher the
encrypted text.

text_length

Direction: Input Type: Integer

The length of the ciphertext that is to be processed. The text length must be a
multiple of 8 bytes. The MAXLEN keyword in the options file determines the
upper limit of the length of the text.

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

text_in

Direction: Input Type: String

The text that is to be translated. The text is enciphered under the data
translation key specified in the key_identifier_in parameter.

initialization_vector_in

Direction: Input Type: String

The 8-byte initialization vector that is used to decipher the input data. This
parameter is the initialization vector used at the previous cryptographic node.

initialization_vector_out

Direction: Input Type: String

The 8-byte initialization vector that is used to encipher the input data. This is
the new initialization vector used when the callable service enciphers the
plaintext.

text_out

Direction: Output Type: String

The field where the callable service returns the translated text.

text_id_in

Direction: Input Type: Integer

For CSNBCTT1 only, the ALET of the text to be translated.

Ciphertext Translate (CSNBCTT and CSNBCTT1)

Chapter 5. Protecting Data 161

text_id_out

Direction: Input Type: Integer

For CSNBCTT1 only, the ALET of the text_out field that the application
supplies.

Restrictions
The input ciphertext length must be an exact multiple of 8 bytes. The minimum
length of the ciphertext that can be translated is 8 bytes.

You cannot use this service on a CDMF-only system.

Usage Note
The initialization vectors must have already been established between the
communicating applications or must be passed with the data.

Decipher (CSNBDEC and CSNBDEC1)
Use the decipher callable service to decipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports the following
processing rules to decipher data. You choose the type of processing rule that the
decipher callable service should use for block chaining.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, but the plaintext will be
1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original
length of the plaintext.

CBC For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, and the plaintext will
have the same length.

CUSP For cipher block chaining, but the ciphertext can be
of any length. The plaintext will be the same length
as the ciphertext.

IBM 4700 For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, but the plaintext will be
1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original
length of the plaintext.

IPS For cipher block chaining, but the ciphertext can be
of any length. The plaintext will be the same length
as the ciphertext.

The cipher block chaining (CBC) mode uses an initial chaining value (ICV) in its
processing. The first 8 bytes of ciphertext is deciphered and then the ICV is
exclusive ORed with the resulting 8 bytes of data to form the first 8-byte block of
plaintext. Thereafter, the 8-byte block of ciphertext is deciphered and exclusive
ORed with the previous 8-byte block of ciphertext until all the ciphertext is
deciphered.

Ciphertext Translate (CSNBCTT and CSNBCTT1)

162 z/OS V1R3.0 ICSF Application Programmer’s Guide

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

A different ICV may be passed on each call to the decipher callable service.
However, the same ICV that was used in the corresponding encipher callable
service must be passed.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks and a
trailing short block of 5 bytes. Because the DES and CDMF process only text in
exact multiples of 8 bytes, some special processing is required to decipher such
short blocks. Short blocks and trailing short blocks of 1 to 7 bytes of data are
processed according to the Cryptographic Unit Support Program (CUSP) rules, or
by the record chaining scheme devised by and used in the Information Protection
System (IPS) in the IPS/CMS product.

These methods of treating short blocks and trailing short blocks do not increase the
length of the ciphertext over the plaintext. If the plaintext was padded during
encipherment, the length of the ciphertext will always be an exact multiple of 8
bytes.

ICSF supports the following padding schemes:

v ANSI X9.23

v 4700-PAD

Choosing Between CSNBDEC and CSNBDEC1
CSNBDEC and CSNBDEC1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBDEC requires the ciphertext and plaintext to reside in the caller’s primary
address space. Also, a program using CSNBDEC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBDEC1 allows the ciphertext and plaintext to reside either in the caller’s
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBDEC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

For CSNBDEC1, cipher_text_id and clear_text_id are access list entry token
(ALET) parameters of the data spaces containing the ciphertext and plaintext.

Decipher (CSNBDEC and CSNBDEC1)

Chapter 5. Protecting Data 163

Format

CALL CSNBDEC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text)

CALL CSNBDEC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text,
cipher_text_id,
clear_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

Decipher (CSNBDEC and CSNBDEC1)

164 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing a data-encrypting key, to be used
for deciphering the data. If the key token or key label contains a single-length
key, single-DES decryption is performed. If the key token or key label contains
a double-length or triple-length key, triple-DES decryption is performed.

text_length

Direction: Input/Output Type: Integer

On entry, you supply the length of the ciphertext. The MAXLEN keyword in the
options file, as provided by the installation, determines the upper limit of the
length of the text. A zero value for the text_length parameter is not valid. If the
returned deciphered text (clear_text parameter) is a different length because of
the removal of padding bytes, the value is updated to the length of the plaintext.

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

The application program passes the length of the ciphertext to the callable
service. The callable service returns the length of the plaintext to your
application program.

cipher_text

Direction: Input Type: String

The text to be deciphered.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the cipher block chaining. The first block of the
ciphertext is deciphered and exclusive ORed with the initial chaining vector
(ICV) to get the first block of cleartext. The input block is the next ICV. To
decipher the data, you must use the same ICV used when you enciphered the
data.

rule_array_count

Direction: Input Type: Integer

Decipher (CSNBDEC and CSNBDEC1)

Chapter 5. Protecting Data 165

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction: Input Type: Character string

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 34. The first keyword in the array
is the processing rule. You choose the processing rule you want the callable
service to use for deciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default) is the encryption algorithm to use.

The service will fail if keyword DES is specified in the rule_array in a
CDMF-only system. The service will likewise fail if keyword CDMF is specified
in the rule_array in a DES-only system.

Table 34. Keywords for the Decipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

CBC Performs ANSI X3.102 cipher block chaining. The data
must be a multiple of 8 bytes. An OCV is produced and
placed in the chaining_vector parameter. If the ICV
selection keyword CONTINUE is specified, the CBC OCV
from the previous call is used as the ICV for this call.

CUSP Performs deciphering that is compatible with IBM’s CUSP
and PCF products. The data can be of any length and
does not need to be in multiples of 8 bytes. The
ciphertext will be the same length as the plaintext. The
CUSP/PCF OCV is placed in the chaining_vector
parameter. If the ICV selection keyword CONTINUE is
specified, the CUSP/PCF OCV from the previous call is
used as the ICV for this call.

IPS Performs deciphering that is compatible with IBM’s IPS
product. The data can be of any length and does not
need to be in multiples of 8 bytes. The ciphertext will be
the same length as the plaintext. The IPS OCV is placed
in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the IPS OCV from the
previous call is used as the ICV for this call.

X9.23 Deciphers with cipher block chaining and text length
reduced to the original value. This is compatible with the
requirements in ANSI standard X9.23. The ciphertext
length must be an exact multiple of 8 bytes. Padding is
removed from the plaintext.

4700-PAD Deciphers with cipher block chaining and text length
reduced to the original value. The ciphertext length must
be an exact multiple of 8 bytes. Padding is removed from
the plaintext.

ICV Selection (optional)

Decipher (CSNBDEC and CSNBDEC1)

166 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 34. Keywords for the Decipher Rule Array Control Information (continued)

Keyword Meaning

CONTINUE This specifies taking the initialization vector from the
output chaining vector (OCV) contained in the work area
to which the chaining_vector parameter points.
CONTINUE is valid only for processing rules CBC, IPS,
and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default
value.

Encryption Algorithm (optional)

CDMF This specifies using the Commercial Data Masking
Facility and ignoring the token marking. You cannot use
double- or triple-length keys with CDMF.

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. This is the default.

Cipher Processing Rules describes the cipher processing rules in detail.

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in the
18-byte string.

The direction is output if the ICV selection keyword of the rule_array parameter
is INITIAL. The direction is input/output if the ICV selection keyword of the
rule_array parameter is CONTINUE.

clear_text

Direction: Output Type: String

The field where the callable service returns the deciphered text.

cipher_text_id

Direction: Input Type: Integer

For CSNBDEC1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

Direction: Input Type: Integer

For CSNBDEC1 only, the ALET of the clear text supplied by the application.

Decipher (CSNBDEC and CSNBDEC1)

Chapter 5. Protecting Data 167

Restrictions
The service will fail under the following conditions:

v If the keyword DES is specified in the rule_array parameter in a CDMF-only
system

v If the keyword CDMF is specified in the rule_array parameter in a DES-only
system

v If the key token contains double or triple-length keys and triple-DES is not
enabled.

Usage Note
Only a DATA key token or DATA key label can be used in this service.

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is incorrect.

cccccc
pppppp is incorrect.

ppppppcccccc is correct.

P represents the plaintext and c represents the ciphertext.

Cipher Processing Rules discusses the cipher processing rules.

The encipher callable services (CSNBENC and CSNBENC1) are described under
“Encipher (CSNBENC and CSNBENC1)” on page 170.

Decode (CSNBDCO)
Use the decode callable service (CSNBDCO) to decipher an 8-byte string using a
clear key. The callable service uses the electronic code book (ECB) mode of the
DES. (This service is available only on a DES-capable system.)

Considerations
If you have only a clear key, you are not limited to using only the encode and
decode callable services. You can pass your clear key to the clear key import
service, and get back a token that will allow you to use the encipher and decipher
callable services.

Format

CALL CSNBDCO(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
cipher_text,
clear_text)

Decipher (CSNBDEC and CSNBDEC1)

168 z/OS V1R3.0 ICSF Application Programmer’s Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The 8-byte clear key value that is used to decode the data.

cipher_text

Direction: Input Type: String

The ciphertext that is to be decoded. Specify 8 bytes of text.

clear_text

Direction: Output Type: String

The 8-byte field where the plaintext is returned by the callable service.

Restriction
You cannot use this service on a CDMF-only system.

Decode (CSNBDCO)

Chapter 5. Protecting Data 169

Encipher (CSNBENC and CSNBENC1)
Use the encipher callable service to encipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports the following
processing rules to encipher data. You choose the type of processing rule that the
encipher callable service should use for the block chaining.

Processing Rule Purpose

ANSI X9.23 For block chaining not necessarily in exact multiples
of 8 bytes. This process rule pads the plaintext so
that ciphertext produced is an exact multiple of 8
bytes.

CBC For block chaining in exact multiples of 8 bytes.

CUSP For block chaining not necessarily in exact multiples
of 8 bytes. The ciphertext will be the same length
as the plaintext.

IBM 4700 For block chaining not necessarily in exact multiples
of 8 bytes. This process rule pads the plaintext so
that the ciphertext produced is an exact multiple of
8 bytes.

IPS For block chaining not necessarily in exact multiples
of 8 bytes. The ciphertext will be the same length
as the plaintext.

For more information about the processing rules, see Table 35 on page 174 and
Cipher Processing Rules.

The cipher block chaining (CBC) mode of operation uses an initial chaining vector
(ICV) in its processing. The ICV is exclusive ORed with the first 8 bytes of plaintext
before the encryption step, and thereafter, the 8-byte block of ciphertext just
produced is exclusive ORed with the next 8-byte block of plaintext, and so on. This
disguises any pattern that may exist in the plaintext.

The selection between single-DES encryption mode and triple-DES encryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES encryption is performed. If a
double-length or triple-length key is supplied, triple-DES encryption is performed.

To nullify the CBC effect on the first 8-byte block, supply 8 bytes of zero. However,
the ICV may require zeros.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

Note that the OCV that results is the same, whether an encipher or a decipher
callable service was invoked, assuming the same text, ICV, and key were used.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks, and a
trailing short block of 5 bytes. Short blocks and trailing short blocks of 1 to 7 bytes
of data are processed according to the Cryptographic Unit Support Program
(CUSP) rules, or by the record chaining scheme devised by and used by the

Encipher (CSNBENC and CSNBENC1)

170 z/OS V1R3.0 ICSF Application Programmer’s Guide

Information Protection System (IPS) in the IPS/CMS program product. These
methods of treating short blocks and trailing short blocks do not increase the length
of the ciphertext over the plaintext.

An alternative method is to pad the plaintext and produce a ciphertext that is longer
than the plaintext. The plaintext can be padded with up to 8 bytes using one of
several padding schemes. This padding produces a ciphertext that is an exact
multiple of 8 bytes long.

If the ciphertext is to be transmitted over a network, where one or more
intermediate nodes will use the ciphertext translate callable service, the ciphertext
must be produced using one of the following methods of padding:

v ANSI X9.23

v 4700

If the cleartext is already a multiple of 8, the ciphertext can be created using any
processing rule.

Because of padding, the returned ciphertext length is longer than the provided
plaintext; the text_length parameter will have been modified. The returned ciphertext
field should be 8 bytes longer than the length of the plaintext to accommodate the
maximum amount of padding. You should provide this extension in your
installation’s storage because ICSF cannot detect whether the extension was done.

The minimum length of data that can be enciphered is one byte. Beginning in z/OS
V1 R2, the MAXLEN value may still be specified in the options data set, but only
the maximum value limit will be enforced (2147483647).

Attention: If you lose the data-encrypting key under which the data (plaintext) is
enciphered, the data enciphered under that key (ciphertext) cannot be recovered.

Choosing between CSNBENC and CSNBENC1
CSNBENC and CSNBENC1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBENC requires the cleartext and ciphertext to reside in the caller’s primary
address space. Also, a program using CSNBENC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBENC1 allows the cleartext and ciphertext to reside either in the caller’s
primary address space or in a data space. This can allow you to encipher more
data with one call. However, a program using CSNBENC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

For CSNBENC1, clear_text_id and cipher_text_id are access list entry token
(ALET) parameters of the data spaces containing the cleartext and ciphertext.

Encipher (CSNBENC and CSNBENC1)

Chapter 5. Protecting Data 171

Format

CALL CSNBENC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text)

CALL CSNBENC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text,
clear_text_id,
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Encipher (CSNBENC and CSNBENC1)

172 z/OS V1R3.0 ICSF Application Programmer’s Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing the data-encrypting key, to be
used for encrypting the data. If the key token or key label contains a
single-length key, single-DES encryption is performed. If the key token or key
label contains a double-length or triple-length key, triple-DES encryption is
performed.

text_length

Direction: Input/Output Type: Integer

On entry, the length of the plaintext (clear_text parameter) you supply. The
MAXLEN keyword in the options file, as provided by the installation, determines
the upper limit of the length of the text, including any necessary padding. A zero
value for the text_length parameter is not valid. If the returned enciphered text
(cipher_text parameter) is a different length because of the addition of padding
bytes, the value is updated to the length of the ciphertext.

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

The application program passes the length of the plaintext to the callable
service. The callable service returns the length of the ciphertext to the
application program.

clear_text

Direction: Input Type: String

The text that is to be enciphered.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the cipher block chaining. The first 8 bytes (or
less) block of the data is exclusive ORed with the ICV and then enciphered.
The input block is enciphered and the next ICV is created. You must use the
same ICV to decipher the data.

Encipher (CSNBENC and CSNBENC1)

Chapter 5. Protecting Data 173

rule_array_count

Direction: Input Type: Integer

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction: Input Type: Character string

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 35. The first keyword in the array
is the processing rule. You choose the processing rule you want the callable
service to use for enciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default to INITIAL) is the encryption algorithm to use.

The service will fail if keyword DES is specified in the rule_array in a
CDMF-only system. The service will likewise fail if the keyword CDMF is
specified in the rule_array in a DES-only system.

Table 35. Keywords for the Encipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

CBC Performs ANSI X3.102 cipher block chaining. The data
must be a multiple of 8 bytes. An OCV is produced and
placed in the chaining_vector parameter. If the ICV
selection keyword CONTINUE is specified, the CBC OCV
from the previous call is used as the ICV for this call.

CUSP Performs ciphering that is compatible with IBM’s CUSP
and PCF products. The data can be of any length and
does not need to be in multiples of 8 bytes. The ciphertext
will be the same length as the plaintext. The CUSP/PCF
OCV is placed in the chaining_vector parameter. If the
ICV selection keyword CONTINUE is specified, the
CUSP/PCF OCV from the previous call is used as the ICV
for this call.

IPS Performs ciphering that is compatible with IBM’s IPS
product. The data may be of any length and does not
need to be in multiples of 8 bytes. The ciphertext will be
the same length as the plaintext. The IPS OCV is placed
in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the IPS OCV from the
previous call is used as the ICV for this call.

X9.23 Performs cipher block chaining with 1 to 8 bytes of
padding. This is compatible with the requirements in ANSI
standard X9.23. If the data is not in exact multiples of 8
bytes, X9.23 pads the plaintext so that the ciphertext
produced is an exact multiple of 8 bytes. The plaintext is
padded to the next multiple 8 bytes, even if this adds 8
bytes. An OCV is produced.

Encipher (CSNBENC and CSNBENC1)

174 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 35. Keywords for the Encipher Rule Array Control Information (continued)

Keyword Meaning

4700-PAD Performs padding by extending the user’s plaintext with
the caller’s specified pad character, followed by a one-byte
binary count field that contains the total number of bytes
added to the message. 4700-PAD pads the plaintext so
that the ciphertext produced is an exact multiple of 8
bytes. An OCV is produced.

ICV Selection (optional)

CONTINUE This specifies taking the initialization vector from the
output chaining vector (OCV) contained in the work area
to which the chaining_vector parameter points.
CONTINUE is valid only for processing rules CBC, IPS,
and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

Encryption Algorithm (optional)

CDMF This specifies using the Commercial Data Masking Facility
and ignoring the token marking. You cannot use
double-length or triple-length keys with CDMF.

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. TOKEN is the default.

The following recommendations help the caller determine which encipher
processing rule to use:

v If you are exchanging enciphered data with a specific implementation, for
example, CUSP or ANSI X9.23, use that processing rule.

v If the ciphertext translate callable service is to be invoked on the enciphered
data at an intermediate node, ensure that the ciphertext is a multiple of 8
bytes. Use CBC, X9.23, or 4700-PAD to prevent the creation of ciphertext
that is not a multiple of 8 bytes and that cannot be processed by the
ciphertext translate callable service.

v If the ciphertext length must be equal to the plaintext length and the plaintext
length cannot be a multiple of 8 bytes, use either the IPS or CUSP
processing rule.

Cipher Processing Rules describes the cipher processing rules in detail.

pad_character

Direction: Input Type: Integer

An integer, 0 to 255, that is used as a padding character for the 4700-PAD
process rule (rule_array parameter).

chaining_vector

Direction: Input/Output Type: String

Encipher (CSNBENC and CSNBENC1)

Chapter 5. Protecting Data 175

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in the
18-byte string.

The direction is output if the ICV selection keyword of the rule_array parameter
is INITIAL.

The direction is input/output if the ICV selection keyword of the rule_array
parameter is CONTINUE.

cipher_text

Direction: Output Type: String

The enciphered text the callable service returns. The length of the ciphertext is
returned in the text_length parameter. The cipher_text may be 8 bytes longer
than the length of the clear_text field because of the padding that is required for
some processing rules.

clear_text_id

Direction: Input Type: Integer

For CSNBENC1 only, the ALET of the clear text to be enciphered.

cipher_text_id

Direction: Input Type: Integer

For CSNBENC1 only, the ALET of the ciphertext that the application supplied.

Restrictions
The service will fail under the following conditions:

v If the keyword DES is specified in the rule_array parameter in a CDMF-only
system

v If the keyword CDMF is specified in the rule_array parameter in a DES-only
system

v If the key token contains double- or triple-length keys and triple-DES is not
enabled.

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is incorrect.

cccccc
pppppp is incorrect.

ppppppcccccc is correct.

P represents the plaintext and c represents the ciphertext.

The method used to produce the OCV is the same with the CBC, 4700-PAD, and
X9.23 processing rules. However, that method is different from the method used by
the CUSP and IPS processing rules.

Encipher (CSNBENC and CSNBENC1)

176 z/OS V1R3.0 ICSF Application Programmer’s Guide

Cipher Processing Rules discusses the cipher processing rules.

The decipher callable services (CSNBDEC and CSNBDEC1) are described under
“Decipher (CSNBDEC and CSNBDEC1)” on page 162.

Encode (CSNBECO)
Use the encode callable service (CSNBECO) to encipher an 8-byte string using a
clear key. The callable service uses the electronic code book (ECB) mode of the
DES. (This service is available only on a DES-capable system.)

Considerations
If you have only a clear key, you are not limited to using just the encode and
decode callable services. You can pass your clear key to the clear key import
service, and get back a token that will allow you to use the encipher and decipher
callable services.

Format

CALL CSNBECO(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
clear_text,
cipher_text)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

Encipher (CSNBENC and CSNBENC1)

Chapter 5. Protecting Data 177

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The 8-byte clear key value that is used to encode the data.

clear_text

Direction: Input Type: String

The plaintext that is to be encoded. Specify 8 bytes of text.

cipher_text

Direction: Output Type: String

The 8-byte field where the ciphertext is returned by the callable service.

Restriction
You cannot use this service on a CDMF-only system.

Symmetric Key Decipher (CSNBSYD)
Use the symmetric key decipher callable service to decipher data in an address
space or a data space using the cipher block chaining or electronic code book
modes. The Advanced Encryption Standard (AES) is supported. AES encryption
uses a 128-, 192-, or 256-bit key. The CBC and ECB modes are supported. Due to
export regulations, AES encryption may not be available on your system.

This service supports both electronic code book (ECB) and cipher block chaining
(CBC) modes. The CBC mode of operation uses an initial chaining vector (ICV) in
its processing. The ICV is exclusive ORed with the first block of plaintext after the
decryption step, and thereafter, each block of ciphertext is exclusive ORed with the
next block of plaintext after decryption, and so on.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

Encode (CSNBECO)

178 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

Format

CALL CSNBSYD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

rule_array_count

Direction: Input Type: Integer

Symmetric Key Decipher (CSNBSYD)

Chapter 5. Protecting Data 179

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|

|

|||
|

|

|

|||

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 36. Symmetric Key Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is in the first 16
bytes in the chain_data.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a
multiple of the block size for the specified algorithm. CBC is
the default value.

ECB Performs electronic code book encryption. The text length
must be a multiple of the block size for the specified
algorithm.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default value.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is valid only for
processing rule CBC.

key_length

Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and
includes only the value of the key. The maximum size is 256 bytes.

key_identifier

Direction: Input Type: String

The cipher key. The parameter must be left justified.

Symmetric Key Decipher (CSNBSYD)

180 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|
|

|

|||
|

|
|
|

||

||

|

||
|
|
|
|

|

||
|
|

||
|
|

|

||
|

|

||
|

||
|
|
|
|

|

|||
|

|
|

|

|||
|

|

key_parms_length

Direction: Ignored Type: Integer

The length of the key_parms parameter. The maximum size is 256 bytes.

key_parms

Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption
algorithm.

block_size

Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific. Be sure to specify the same block size as used
to encipher the text.

initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to
the block length for the algorithm specified.

initialization_vector

Direction: Input Type: String

This initialization chaining value for CBC encryption. You must use the same
ICV that was used to encipher the data.

chain_data_length

Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chain_data

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The direction is output if the ICV selection keyword is INITIAL.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data.

Symmetric Key Decipher (CSNBSYD)

Chapter 5. Protecting Data 181

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|
|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|
|

|

|
|
|

cipher_text_length

Direction: Input Type: Integer

The length of the cipher text. A zero value in the clear_text_length parameter is
not valid. The length must be a multiple of the algorithm block size.

cipher_text

Direction: Input Type: String

The text to be deciphered.

clear_text_length

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
clear_text parameter. On output, this parameter has the actual length of the text
stored in the clear_text parameter.

clear_text

Direction: Output Type: String

The deciphered text the service returns.

optional_data_length

Direction: Ignored Type: Integer

The length of the optional_data parameter.

optional_data

Direction: Ignored Type: String

Optional data required by a specified algorithm.

Usage Notes
v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The CCF master keys need not be loaded to use this service.

v The AES algorithm is implemented in the software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the
cipher_text field.

Symmetric Key Decipher (CSNBSYD)

182 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|||
|

|
|

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|

|

|

|

|

|

|

|
|

Symmetric Key Encipher (CSNBSYE)
Use the symmetric key encipher callable service to encipher data in an address
space or a data space using the cipher block chaining or electronic code book
modes. The Advanced Encryption Standard (AES) is supported. AES encryption
uses a 128-, 192-, or 256-bit key. The CBC and ECB modes are supported. Due to
export regulations, AES encryption may not be available on your system.

This service supports both electronic code book (ECB) and cipher block chaining
(CBC) modes. The CBC mode of operation uses an initial chaining vector (ICV) in
its processing. The ICV is exclusive ORed with the first block of plaintext before the
encryption step, and thereafter, the block of ciphertext just produced is exclusive
ORed with the next block of plaintext, and so on. This disguises any pattern that
may exist in the plaintext.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

Format

CALL CSNBSYE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Symmetric Key Encipher (CSNBSYE)

Chapter 5. Protecting Data 183

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 37. Symmetric Key Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is in the first 16
bytes in the chain_data.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a
multiple of the block size for the specified algorithm. CBC is
the default value.

ECB Performs electronic code book encryption. The text length
must be a multiple of the block size for the specified
algorithm.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

Symmetric Key Encipher (CSNBSYE)

184 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|
|

||

||

|

||
|
|
|
|

|

||
|
|

||
|
|

|

||
|

|

||
|

Table 37. Symmetric Key Encipher Rule Array Keywords (continued)

Keyword Meaning

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is valid only for
processing rule CBC.

key_length

Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and
includes only the value of the key.

key_identifier

Direction: Input Type: String

The cipher key. The parameter must be left justified.

key_parms_length

Direction: Ignored Type: Integer

The length of the key_parms parameter.

key_parms

Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption
algorithm.

block_size

Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific.

initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to
the block length for the algorithm specified.

initialization_vector

Direction: Input Type: String

This initialization chaining value for CBC encryption. You must use the same
ICV to decipher the data.

Symmetric Key Encipher (CSNBSYE)

Chapter 5. Protecting Data 185

|

||

||
|
|
|
|

|

|||
|

|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|

chain_data_length

Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chain_data

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The direction is output if the ICV selection keyword is INITIAL.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data.

clear_text_length

Direction: Input Type: Integer

The length of the clear text. A zero value in the clear_text_length parameter is
not valid. The length must be a multiple of the algorithm block size.

clear_text

Direction: Input Type: String

The text to be enciphered.

cipher_text_length

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
cipher_text parameter. On output, this parameter has the actual length of the
text stored in the buffer addressed by the cipher_text parameter.

cipher_text

Direction: Output Type: String

The enciphered text the service returns.

optional_data_length

Direction: Ignored Type: Integer

The length of the optional_data parameter.

Symmetric Key Encipher (CSNBSYE)

186 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|||
|

|
|

|

|||
|

|
|
|

|

|
|
|

|

|||
|

|
|

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|

optional_data

Direction: Ignored Type: String

Optional data required by a specified algorithm.

Usage Notes
v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The CCF master keys need not be loaded to use this service.

v The AES algorithm is implemented in the software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the clear_text
field.

Symmetric Key Encipher (CSNBSYE)

Chapter 5. Protecting Data 187

|

|||
|

|

|

|

|

|

|

|

|
|

Symmetric Key Encipher (CSNBSYE)

188 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 6. Verifying Data Integrity and Authenticating
Messages

ICSF provides several methods to verify the integrity of transmitted messages and
stored data:
v Message authentication code (MAC)
v Hash functions, including modification detection code (MDC) processing and

one-way hash generation

Note: You can also use digital signatures (see Chapter 8, “Using Digital Signatures”
on page 265) to authenticate messages.

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender as well as the integrity of the data, and both the sender and receiver
can share a secret key, consider message authentication code processing. If you
need to ensure the integrity of transmitted data in an environment where it is not
possible for the sender and the receiver to share a secret cryptographic key,
consider hashing functions, such as the modification detection code process.

The callable services are described in the following topics:
v “MAC Generate (CSNBMGN and CSNBMGN1)” on page 191
v “MAC Verify (CSNBMVR and CSNBMVR1)” on page 195
v “MDC Generate (CSNBMDG and CSNBMDG1)” on page 200
v “One-Way Hash Generate (CSNBOWH and CSNBOWH1)” on page 204

How MACs are Used
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. ICSF supports the ANSI
X9.9-1 basic procedure and both the ANSI X9.19 basic procedure and optional
double key MAC procedure. The service computes the text of the message
authentication code using the algorithm and a key. The ANSI X9.9-1 or ANSI X9.19
basic procedures accept either a single-length MAC generation (MAC) key or a
data-encrypting (DATA) key, and the message text. The ANSI X9.19 optional double
key MAC procedure accepts a double-length MAC key and the message text. The
message text may be in clear or encrypted form. The originator of the message
sends the MAC with the message text.

When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service generates a MAC using the same
algorithm as the sender and either the single-length (MACVER) or double-length
(DATAMV) MAC verification key, the single-length (MAC) or double-length (DATAM)
MAC generation key, or DATA key, and the message text. The MACVER callable
service compares the MAC it generates with the one sent with the message and
issues a return code that indicates whether the MACs match. If the return code
indicates that the MACs match, the receiver can accept the message as genuine
and unaltered. If the return code indicates that the MACs do not match, the receiver
can assume that the message is either bogus or has been altered. The newly
computed MAC is not revealed outside the cryptographic feature.

In a similar manner, MACs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

© Copyright IBM Corp. 1997, 2002 189

Secure use of the MAC generation and MAC verification services requires the use
of MAC and MACVER keys in these services, respectively. To accomplish this, the
originator of the message generates a MAC/MACVER key pair, uses the MAC key
in the MAC generation service, and exports the MACVER key to the receiver. The
originator of the message enforces key separation on the link by encrypting the
MACVER key under a transport key that is not an NOCV key before exporting the
key to the receiver. With this type of key separation enforced, the receiver can only
receive a MACVER key and can use only this key in the MAC verification service.
This ensures that the receiver cannot alter the message and produce a valid MAC
with the altered message. These security features are not present if DATA keys are
used in the MAC generation service, or if DATA or MAC keys are used in the MAC
verification service.

By using MACs, you get the following benefits:

v For data transmitted over a network, you can validate the authenticity of the
message as well as ensure that the data has not been altered during
transmission. For example, an active eavesdropper can tap into a transmission
line, and interject bogus messages or alter sensitive data being transmitted. If the
data is accompanied by a MAC, the recipient can use a callable service to detect
whether the data has been altered. Since both the sender and receiver share a
secret key, the receiver can use a callable service that calculates a MAC on the
received message and compares it to the MAC transmitted with the message. If
the comparison is equal, the message may be accepted as unaltered.
Furthermore, since the shared key is secret, when a MAC is verified it can be
assumed that the sender was, in fact, the other person who knew the secret key.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. For
example, someone might be able to bypass access controls. Such an access
might escape the notice of auditors. However, if a MAC is stored with the data,
and verified when the data is read, you can detect alterations to the data.

How Hashing Functions Are Used
Hashing functions include the MDC and one-way hash. You need to hash text
before submitting it to digital signature services (see Chapter 8, “Using Digital
Signatures” on page 265).

How MDCs Are Used
When a message is sent, an application program can generate a modification
detection code for it using the MDC generation callable service. The service
computes the modification detection code, a 128-bit value, using a one-way
cryptographic function and the message text (which itself may be in clear or
encrypted form). The originator of the message ensures that the MDC is transmitted
with integrity to the intended receiver of the message. For example, the MDC could
be published in a reliable source of public information.

When the receiver gets the message, an application program calls the MDC
callable service. The callable service generates an MDC by using the same
one-way cryptographic function and the message text. The application program can
compare the new MDC with the one generated by the originator of the message. If
the MDCs match, the receiver knows that the message was not altered.

In a similar manner, MDCs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

190 z/OS V1R3.0 ICSF Application Programmer’s Guide

By using MDCs, you get the following benefits:

v For data transmitted over a network between locations that do not share a
secret key, you can ensure that the data has not been altered during
transmission. It is easy to compute an MDC for specific data, yet hard to find
data that will result in a given MDC. In effect, the problem of ensuring the
integrity of a large file is reduced to ensuring the integrity of a 128-bit value.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. Once an
MDC has been established for a file, the MDC generation callable service can be
run at any later time on the file. The resulting MDC can be compared with the
stored MDC to detect deliberate or inadvertent modification.

SHA-1 is a FIPS standard required for DSS. MD5 is a hashing algorithm used to
derive Message Digests in Digital Signature applications.

MAC Generate (CSNBMGN and CSNBMGN1)
Use the MAC generate callable service to generate a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1
procedure you identify either a MAC generate key or a DATA key, and the message
text. For the ANSI X9.19 optional double key MAC procedure, you identify a
double-length MAC key and the message text.

The MAC generate callable service also supports the padding rules specified in the
EMV Specification.

ICSF routes the MAC Generate request to a PCI Cryptographic Coprocessor if the
control vector in the supplied key identifier cannot be processed on the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails. The request must meet the following restrictions:

v The MAC Process Rule is X9.19OPT or EMVMACD

v The MAC key is a valid double-length MAC generate key

v The segmenting control keyword is ONLY

v The text_length is not greater than 4096 including padding

Choosing Between CSNBMGN and CSNBMGN1
CSNBMGN and CSNBMGN1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMGN requires the application-supplied text to reside in the caller’s primary
address space. Also, a program using CSNBMGN adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBMGN1 allows the application-supplied text to reside either in the caller’s
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMGN1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

For CSNBMGN1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Chapter 6. Verifying Data Integrity and Authenticating Messages 191

Format

CALL CSNBMGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

CALL CSNBMGN1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

MAC Generate (CSNBMGN and CSNBMGN1)

192 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token that identifies a single-length or
double-length MAC generate key or a single-length DATA key. The type of key
depends on the MAC process rule in the rule_array parameter.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The MAXLEN keyword
in the options file determines the maximum length of the text. (See z/OS ICSF
System Programmer’s Guide for a description of the MAXLEN keyword in the
options file.) If the text_length is not a multiple of 8 bytes and if the ONLY or
LAST keyword of the rule_array parameter is called, the text is padded with
binary zeros.

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction: Input Type: Character string

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 38 on page 194. The keywords must be in 24
bytes of contiguous storage with each of the keywords left-justified in its own
8-byte location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

MAC Generate (CSNBMGN and CSNBMGN1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 193

Table 38. Keywords for MAC generate Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC or
a single-length DATA key. The text is always padded with 1 to
8 bytes so that the resulting text length is a multiple of 8
bytes. The first pad character is X'80'. The remaining 0 to 7
pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for EMVMAC.

X9.19OPT ANSI X9.19 optional double key MAC procedure. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for X9.9-1.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC or a
single-length DATA key. X9.9-1 causes the MAC to be
computed from all of the data. The text is padded only if the
text length is not a multiple of 8 bytes. If padding is required,
the pad character X'00' is used. This is the default value.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

MAC Length and Presentation (optional)

HEX-8 Generates a 4-byte MAC value and presents it as 8
hexadecimal characters.

HEX-9 Generates a 4-byte MAC value and presents it as 2 groups
of 4 hexadecimal characters with a space between the
groups.

MACLEN4 Generates a 4-byte MAC value. This is the default value.

MACLEN6 Generates a 6-byte MAC value.

MACLEN8 Generates an 8-byte MAC value.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac

Direction: Output Type: String

MAC Generate (CSNBMGN and CSNBMGN1)

194 z/OS V1R3.0 ICSF Application Programmer’s Guide

The 8-byte or 9-byte field in which the callable service returns the MAC value if
the segmenting rule is ONLY or LAST. Allocate an 8-byte field for MAC values
of 4 bytes, 6 bytes, 8 bytes, or HEX-8. Allocate a 9-byte MAC field if you
specify HEX-9 in the rule_array parameter.

text_id_in

Direction: Input Type: Integer

For CSNBMGN1 only, the ALET of the text for which the MAC is generated.

Usage Notes
To use a DATA key, the NOCV-enablement keys must be present in the CKDS.
Using a DATA key instead of a MAC generate key in this service substantially
increases the path length for generating the MAC.

To calculate a MAC in one call, specify the ONLY keyword for segmenting control
for the rule_array parameter. For two or more calls, specify the FIRST keyword for
the first input block, the MIDDLE keyword for intermediate blocks (if any), and the
LAST keyword for the last block.

For a given text string, the resulting MAC is the same whether the text is
segmented or not.

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application Programming
Interface Reference.

The MAC verification callable service is described in “MAC Verify (CSNBMVR and
CSNBMVR1)”.

MAC Verify (CSNBMVR and CSNBMVR1)
Use the MAC verify callable service to verify a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1
procedure you identify either a MAC verify key, a MAC generation key, or a DATA
key, and the message text. For the ANSI X9.19 optional double key MAC
procedure, you identify either a double-length MAC verify key or a double-length
MAC generation key and the message text. The cryptographic feature compares the
generated MAC with the one sent with the message. A return code indicates
whether the MACs are the same. If the MACs are the same, the receiver knows the
message was not altered. The generated MAC never appears in storage is not
revealed outside the cryptographic feature.

The MAC verify callable service also supports the padding rules specified in the
EMV Specification.

ICSF routes the MAC Verify request to a PCI Cryptographic Coprocessor if the
control vector in the supplied key identifier cannot be processed on the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails. The request must meet the following restrictions:

v The MAC Process Rule is X9.19OPT or EMVMACD

MAC Generate (CSNBMGN and CSNBMGN1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 195

v The MAC key is a valid double-length MAC generation or MAC verify key

v The segmenting control keyword is ONLY

v The text_length is not greater than 4096 including padding

Choosing Between CSNBMVR and CSNBMVR1
CSNBMVR and CSNBMVR1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMVR requires the application-supplied text to reside in the caller’s primary
address space. Also, a program using CSNBMVR adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBMVR1 allows the application-supplied text to reside either in the caller’s
primary address space or in a data space. This can allow you to verify more data
with one call. However, a program using CSNBMVR1 does not adhere to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface, and may need to be modified before it can run with other cryptographic
products that follow this programming interface.

For CSNBMVR1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Format

CALL CSNBMVR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

CALL CSNBMVR1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

MAC Verify (CSNBMVR and CSNBMVR1)

196 z/OS V1R3.0 ICSF Application Programmer’s Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output

The 64-byte key label or internal key token that identifies a single-length or
double-length MAC verify key, a single-length or double-length MAC generation
key or a single-length DATA key. The type of key depends on the MAC process
rule in the rule_array parameter.

text_length

Direction: Input Type: Integer

The length of the clear text you supply in the text parameter. The MAXLEN
keyword in the options file determines the maximum length of the text. (See the
z/OS ICSF System Programmer’s Guide for a description of the MAXLEN
keyword in the options file.) If the text_length parameter is not a multiple of 8
bytes and if the ONLY or LAST keyword of the rule_array parameter is called,
the text is padded with binary zeros.

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

text

Direction: Input Type: String

The application-supplied text for which the MAC is verified.

MAC Verify (CSNBMVR and CSNBMVR1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 197

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction: Input Type: Character string

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 39. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 39. Keywords for MAC verify Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC,
MACVER, or DATA key. The text is always padded with 1
to 8 bytes so that the resulting text length is a multiple of 8
bytes. The first pad character is X'80'. The remaining 0 to 7
pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
or MACVER key. The padding rules are the same as for
EMVMAC.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC, MACVER, or
DATA key. X9.9-1 causes the MAC to be computed from all
of the data. The text is padded only if the text length is not
a multiple of 8 bytes. If padding is required, the pad
character X'00' is used. This is the default value.

X9.19OPT ANSI X9.19 optional double-length MAC procedure. The
key_identifier parameter must identify a double-length MAC
or MACVER key. The padding rules are the same as for
X9.9-1.

Segmenting Control (optional)

FIRST First call; this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; the application program does not employ
segmenting. This is the default value.

MAC Length and Presentation (optional)

MAC Verify (CSNBMVR and CSNBMVR1)

198 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 39. Keywords for MAC verify Control Information (continued)

Keyword Meaning

HEX-8 Verifies a 4-byte MAC value that is represented as 8
hexadecimal characters.

HEX-9 Verifies a 4-byte MAC value that is represented as 2
groups of 4 hexadecimal characters with a space character
between the groups.

MACLEN4 Verifies a 4-byte MAC value. This is the default value.

MACLEN6 Verifies a 6-byte MAC value.

MACLEN8 Verifies an 8-byte MAC value.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter to binary zeros.

mac

Direction: Input Type: String

The 8- or 9-byte field that contains the MAC value you want to verify. The value
in the field must be left-justified and padded with zeros. If you specified the
HEX-9 keyword in the rule_array parameter, the input MAC is 9 bytes.

text_id_in

Direction: Input Type: Integer

For CSNBMVR1 only, the ALET of the text for which the MAC is to be verified.

Usage Notes
To verify a MAC in one call, specify the ONLY keyword on the segmenting rule
keyword for the rule_array parameter. For two or more calls, specify the FIRST
keyword for the first input block, MIDDLE for intermediate blocks (if any), and LAST
for the last block.

For a given text string, the MAC resulting from the verification process is the same
regardless of how the text is segmented, or how it was segmented when the
original MAC was generated.

To use a MAC generation key or a DATA key, the NOCV enablement keys must be
present in the CKDS. Using either a MAC generation key or a DATA key instead of
a MAC verify key in this service substantially increases the path length for verifying
the MAC.

MAC Verify (CSNBMVR and CSNBMVR1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 199

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application Programming
Interface Reference.

The MAC generation callable service is described in “MAC Generate (CSNBMGN
and CSNBMGN1)” on page 191.

MDC Generate (CSNBMDG and CSNBMDG1)
A modification detection code (MDC) can be used to provide a form of support for
data integrity.

Use the MDC generate callable service to generate a 128-bit modification detection
code (MDC) for an application-supplied text string.

The returned MDC value should be securely stored and/or sent to another user. To
validate the integrity of the text string at a later time, the MDC generate callable
service is again used to generate a 128-bit MDC. The new MDC value is compared
with the original MDC value. If the values are equal, the text is accepted as
unchanged.

Choosing Between CSNBMDG and CSNBMDG1
CSNBMDG and CSNBMDG1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMDG requires the application-supplied text to reside in the caller’s primary
address space. Also, a program using CSNBMDG adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBMDG1 allows the application-supplied text to reside either in the caller’s
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMDG1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

For CSNBMDG1, text_id_in parameter specifies the access list entry token
(ALET) for the data space containing the application-supplied text.

Format

CALL CSNBMDG(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc)

MAC Verify (CSNBMVR and CSNBMVR1)

200 z/OS V1R3.0 ICSF Application Programmer’s Guide

CALL CSNBMDG1(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” on page 335 lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” on page 335 lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter.

The MAXLEN keyword in the options file determines the maximum length of the
text for this call. (See z/OS ICSF System Programmer’s Guide for a description
of the MAXLEN keyword in the options file.)

MDC Generate (CSNBMDG and CSNBMDG1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 201

Note: Beginning in z/OS V1 R2, the MAXLEN value may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647).

Additional restrictions on length of the text depend on whether padding of the
text is requested, and on the segmenting control used.

v When padding is requested (by specifying a process rule of PADMDC-2 or
PADMDC-4 in the rule_array parameter), a text length of 0 is valid for any
segment control specified in the rule_array parameter (FIRST, MIDDLE,
LAST, or ONLY). When LAST or ONLY is specified, the supplied text will be
padded with X’FF’s and a padding count in the last byte to bring the total text
length to the next multiple of 8 that is greater than or equal to 16,

v When no padding is requested (by specifying a process rule of MDC-2 or
MDC-4), the total length of the text provided (over a single or segmented
calls) must be at least 16 bytes, and a multiple of 8.

For segmented calls with no padding, text length of 0 is valid on any of the
calls provided the total length over the segmented calls is at least 16 and a
multiple of 8.

For a single call (that is, segment control is ONLY) with no padding, the
length the text provided must be at least 16, and a multiple of 8.

text

Direction: Input Type: String

The application-supplied text for which the MDC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. This value must
be 2.

rule_array

Direction: Input Type: Character string

The two keywords that provide control information to the callable service are
shown in Table 40. The two keywords must be in 16 bytes of contiguous
storage with each of the two keywords left-justified in its own 8-byte location
and padded on the right with blanks. For example,
’MDC-2 FIRST ’

Choose one of the MDC process rule control keywords and one of the
segmenting control keywords from the following table.

Table 40. Keywords for MDC Generate Control Information

Keyword Meaning

MDC Process Rules (required)

MDC-2 MDC-2 specifies two encipherments per 8 bytes of input
text and no padding of the input text.

MDC Generate (CSNBMDG and CSNBMDG1)

202 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 40. Keywords for MDC Generate Control Information (continued)

Keyword Meaning

MDC-4 MDC-4 specifies four encipherments per 8 bytes of input
text and no padding of the input text.

PADMDC-2 PADMDC-2 specifies two encipherments per 8 bytes of
input text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple
of 8 that is greater than, or equal to, 16.

PADMDC-4 PADMDC-4 specifies four encipherments per 8 bytes of
input text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple
of 8 that is greater than, or equal to, 16.

Segmenting Control (required)

FIRST First call; this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mdc

Direction: Input/Output Type: String

A 16-byte field in which the callable service returns the MDC value when the
segmenting rule is ONLY or LAST. When the segmenting rule is FIRST or
MIDDLE, the value returned in this field is an intermediate MDC value that will
be used as input for a subsequent call and must not be changed by the
application program.

text_id_in

Direction: Input Type: Integer

For CSNBMDG1 only, the ALET for the data space containing the text for which
the MDC is to be generated.

MDC Generate (CSNBMDG and CSNBMDG1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 203

Usage Notes
To calculate an MDC in one call, specify the ONLY keyword for segmenting control
in the rule_array parameter. For more than one call, specify the FIRST keyword for
the first input block, the MIDDLE keyword for any intermediate blocks, and the
LAST keyword for the last block. For a given text string, the resulting MDC is the
same whether the text is segmented or not.

The two versions of MDC calculation (with two or four encipherments per 8 bytes of
input text) allow the caller to trade a performance improvement for a decrease in
security. Since 2 encipherments create results different from the results of 4
encipherments, ensure that you use the same number of encipherments to verify
the MDC value.

Related Information
The MAC generation service, using a publicly known key, can be used similarly to
the MDC generate service, while providing better performance. The cryptographic
work factor to break a MAC generated with a publicly known key, although much
less than that for MDC generate, may be enough for some applications.

One-Way Hash Generate (CSNBOWH and CSNBOWH1)
Use the one-way hash generate callable service to generate a one-way hash on
specified text. This service supports the following methods:

v MD5

v SHA-1

v RIPEMD-160

Note: MDC-2, MDC-4, PADMDC-2 and PADMDC-4 are supported through the
MDC generation service (see “MDC Generate (CSNBMDG and
CSNBMDG1)” on page 200).

Format

CALL CSNBOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash)

MDC Generate (CSNBMDG and CSNBMDG1)

204 z/OS V1R3.0 ICSF Application Programmer’s Guide

CALL CSNBOWH1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

One-Way Hash Generate (CSNBOWH and CSNBOWH1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 205

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service are listed in
Table 41. The optional chaining flag keyword indicates whether calls to this
service are chained together logically to overcome buffer size limitations. Each
keyword is left-justified in an 8-byte field and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 41. Keywords for One-Way Hash Generate Rule Array Control Information

Keyword Meaning

Hash Method (required)

MD5 Hash algorithm is MD5 algorithm. Use this hash method for
PKCS-1.0 and PKCS-1.1. Length of hash generated is 16
bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is
20 bytes.

SHA-1 Hash algorithm is SHA-1 algorithm. Use this hash method for
DSS. Length of hash generated is 20 bytes.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash field.

ONLY Specifies this is the only call and the call is not chained. This
is the default.

text_length

Direction: Input Type: Integer

The length of the text parameter in bytes.

Note: If you specify the FIRST or MIDDLE keyword, then the text length must
be a multiple of the blocksize of the hash method. For MD5 and SHA-1,
this is a multiple of 64 bytes.

For ONLY and LAST, this service performs the required padding
according to the algorithm specified.

text

Direction: Input Type: String

The application-supplied text on which this service performs the hash.

chaining_vector_length

Direction: Input Type: Integer

The byte length of the chaining_vector parameter. This must be 128 bytes.

One-Way Hash Generate (CSNBOWH and CSNBOWH1)

206 z/OS V1R3.0 ICSF Application Programmer’s Guide

chaining_vector

Direction: Input/Output Type: String

This field is a 128-byte work area. Your application must not change the data in
this string. The chaining vector permits chaining data from one call to another.

hash_length

Direction: Input Type: Integer

The length of the supplied hash field in bytes.

Note: For SHA-1 and RPMD-160 this must be at least 20 bytes; for MD5 this
must be at least 16 bytes.

hash

Direction: Input/Output Type: String

This field contains the hash, left-justified. The processing of the rest of the field
depends on the implementation. If you specify the FIRST or MIDDLE keyword,
this field contains the intermediate hash value. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message.

text_id_in

Direction: Input Type: Integer

For CSNBOWH1 only, the ALET for the data space containing the text for which
to generate the hash.

Usage Note
Although MD5 and SHA-1 allow it, bit length text is not supported for any hashing
method.

One-Way Hash Generate (CSNBOWH and CSNBOWH1)

Chapter 6. Verifying Data Integrity and Authenticating Messages 207

One-Way Hash Generate (CSNBOWH and CSNBOWH1)

208 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 7. Financial Services

The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across financial industry networks. ICSF
provides callable services to translate, verify, and generate PINs. You can use the
callable services to prevent unauthorized disclosures when organizations handle
PINs.

The following callable services are described in the following topics:
v “Clear PIN Encrypt (CSNBCPE)” on page 214
v “Clear PIN Generate (CSNBPGN)” on page 217
v “Clear PIN Generate Alternate (CSNBCPA)” on page 220
v “Encrypted PIN Generate (CSNBEPG)” on page 226
v “Encrypted PIN Translate (CSNBPTR)” on page 230
v “Encrypted PIN Verify (CSNBPVR)” on page 236
v “Secure Messaging for Keys (CSNBSKY)” on page 242
v “Secure Messaging for PINs (CSNBSPN)” on page 245
v “SET Block Compose (CSNDSBC)” on page 249
v “SET Block Decompose (CSNDSBD)” on page 253
v “VISA CVV Service Generate (CSNBCSG)” on page 258
v “VISA CVV Service Verify (CSNBCSV)” on page 261

How Personal Identification Numbers (PINs) are Used
Many people are familiar with PINs, which allow them to use an automated teller
machine (ATM). From the system point of view, PINs are used primarily in financial
networks to authenticate users — typically, a user is assigned a PIN, and enters the
PIN at automated teller machines (ATMs) to gain access to his or her accounts. It is
extremely important that the PIN be kept private, so that no one other than the
account owner can use it. ICSF allows your applications to generate PINs, to verify
supplied PINs, and to translate PINs from one format to another.

How VISA Card Verification Values Are Used
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that relates
to the personal account number (PAN), the card expiration date, and the service
code. The VISA card-verification value (CVV) and the MasterCard card-verification
code (CVC) can be encoded on either track 1 or track 2 of a magnetic striped card
and are used to detect forged cards. Because most online transactions use track-2,
the ICSF callable services generate and verify the CVV4 by the track-2 method.

The VISA CVV service generate callable service calculates a 1- to 5-byte value
through the DES-encryption of the PAN, the card expiration date, and the service
code using two data-encrypting keys or two MAC keys. The VISA CVV service
verify callable service calculates the CVV by the same method, compares it to the
CVV supplied by the application (which reads the credit card’s magnetic stripe) in
the CVV_value, and issues a return code that indicates whether the card is
authentic.

4. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

© Copyright IBM Corp. 1997, 2002 209

Translating Data and PINs in Networks
More and more data is being transmitted across networks where, for various
reasons, the keys used on one network cannot be used on another network.
Encrypted data and PINs that are transmitted across these boundaries must be
“translated” securely from encryption under one key to encryption under another
key. For example, a traveler visiting a foreign city might wish to use an ATM to
access an account at home. The PIN entered at the ATM might need to be
encrypted at the ATM and sent over one or more financial networks to the traveler’s
home bank. At the home bank, the PIN must be verified before access is allowed.
On intermediate systems (between networks), applications can use the Encrypted
PIN translate callable service to re-encrypt a PIN block from one key to another.
Running on ICSF, such applications can ensure that PINs never appear in the clear
and that the PIN-encrypting keys are isolated on their own networks.

PIN Callable Services
You use the PIN callable services to generate, verify, and translate PINs. This
section discusses the PIN callable services, as well as the various PIN algorithms
and PIN block formats supported by ICSF. It also explains the use of PIN-encrypting
keys.

Generating a PIN
To generate personal identification numbers, call the Clear PIN Generate or
Encrypted PIN Generate callable service. Using a PIN generation algorithm, data
used in the algorithm, and the PIN generation key, the Clear PIN generate callable
service generates a clear PIN and a PIN verification value, or offset. The Clear PIN
Generate callable service can only execute in special secure mode. For a
description of this mode, see “Special Secure Mode” on page 9. Using a PIN
generation algorithm, data used in the algorithm, the PIN generation key, and an
outbound PIN encrypting key, the encrypted PIN generate callable service
generates and formats a PIN and encrypts the PIN block.

Encrypting a PIN
To format a PIN into a supported PIN block format and encrypt the PIN block, call
the Clear PIN encrypt callable service.

Generating a PIN Validation Value from an Encrypted PIN Block
To generate a clear VISA PIN validation value (PVV) from an encrypted PIN block,
call the clear PIN generate alternate callable service. The PIN block can be
encrypted under an input PIN-encrypting key (IPINENC) or an output PIN
encrypting key (OPINENC). Using an IPINENC key requires that NOCV keys are
enabled in the CKDS.

Verifying a PIN
To verify a supplied PIN, call the Encrypted PIN verify callable service. You supply
the enciphered PIN, the PIN-encrypting key that enciphers the PIN, and other data.
You must also specify the PIN verification key and PIN verification algorithm. The
callable service generates a verification PIN. The service compares the two
personal identification numbers and if they are the same, it verifies the supplied
PIN.

210 z/OS V1R3.0 ICSF Application Programmer’s Guide

Translating a PIN
To translate a PIN block format from one PIN-encrypting key to another or from one
PIN block format to another, call the Encrypted PIN translate callable service. You
must identify the input PIN-encrypting key that originally enciphered the PIN. You
also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format.

Algorithms for Generating and Verifying a PIN

ICSF supports the following algorithms for generating and verifying personal
identification numbers:
v IBM 3624 institution-assigned PIN
v IBM 3624 customer-selected PIN (through a PIN offset)
v IBM German Bank Pool PIN (verify through an institution key)
v IBM German Bank Pool PIN (verify through a pool key and a PIN offset). This

algorithm is supported when the service using the PIN is processed on the
Cryptographic Coprocessor Feature.

v VISA PIN through a VISA PIN validation value
v Interbank PIN

The algorithms are discussed in detail in PIN Formats and Algorithms.

Using PINs on Different Systems
ICSF allows you to translate different PIN block formats, which lets you use
personal identification numbers on different systems. ICSF supports the following
formats:
v IBM 3624
v IBM 3621 (same as IBM 5906)
v IBM 4704 encrypting PINPAD format
v ISO 0 (same as ANSI 9.8, VISA 1, and ECI 1)
v ISO 1 (same as ECI 4)
v ISO 2
v VISA 2
v VISA 3
v VISA 4
v ECI 2
v ECI 3

The formats are discussed in “PIN Formats and Algorithms” on page 419.

PIN-Encrypting Keys
A unique master key variant enciphers each type of key. For further key separation,
an installation can choose to have each PIN block format enciphered under a
different PIN-encrypting key. The PIN-encrypting keys can have a 16-byte PIN block
variant constant exclusive ORed on them before they are used to translate or verify
PIN blocks. This is specified in the format control field in the Encrypted PIN
translate and Encrypted PIN verify callable services.

You should only use PIN block variant constants when you are communicating with
another host processor with the Integrated Cryptographic Service Facility.

For more information about PIN-encrypting keys, see z/OS ICSF Administrator’s
Guide.

Chapter 7. Financial Services 211

The PIN Profile
The PIN profile consists of the following:
v PIN block format
v Format control
v Pad digit
v Current Key Serial Number (for UKPT only)

Table 42 shows the format of a PIN profile.

Table 42. Format of a PIN Profile

Bytes Description

0–7 PIN block format

8–15 Format control

16–23 Pad digit

24–47 Current Key Serial Number (for UKPT only)

PIN Block Format
This keyword specifies the format of the PIN block. The 8-byte value must be
left-justified and padded with blanks. Refer to Table 43 for a list of valid values.

Table 43. Format Values of PIN Blocks

Format Value Description

ECI-2 Eurocheque International format 2

ECI-3 Eurocheque International format 3

ISO-0 ISO format 0, ANSI X9.8, VISA 1, and ECI 1

ISO-1 ISO format 1 and ECI 4

ISO-2 ISO format 2

VISA-2 VISA format 2

VISA-3 VISA format 3

VISA-4 VISA format 4

3621 IBM 3621 and 5906

3624 IBM 3624

4704-EPP IBM 4704 with encrypting PIN pad

Format Control
This keyword specifies whether there is any control on the user-supplied PIN
format. The 8-byte value must be left-justified and padded with blanks. Specify one
of the following values:

NONE No format control.

PBVC A PIN block variant constant (PBVC) enforces format control. Use the
PBVC value only if you have coded PBVC in the encrypted PIN translate
callable service. For the PBVC, the clear PIN key-encrypting key has been
exclusive ORed with one of the PIN block formats. The cryptographic
feature removes the pattern from the clear PIN key-encrypting key before it
decrypts the PIN block.

212 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

||

Notes:

1. Only control vectors and extraction methods valid for the Cryptographic
Coprocessor Feature may be used if the PBVC format control is
desired.

2. PBVC is supported for compatibility with prior releases of OS/390 ICSF
and existing ICSF applications. It is recommended that a format control
of NONE be specified.

If you do not specify a value for the format control parameter, ICSF uses
hexadecimal zeros.

Table 56 on page 225 lists the PIN block variant constants.

Pad Digit
Some PIN formats require this parameter. If the PIN format does not need a pad
digit, the callable service ignores this parameter. Table 44 shows the format of a
pad digit. The PIN profile pad digit must be specified in upper case.

Table 44. Format of a Pad Digit

Bytes Description

16–22 Seven space characters

23 Character representation of a hexadecimal pad digit or a space
if a pad digit is not needed. Characters must be one of the
following: 0–9, A–F, or a blank.

Each PIN format supports only a pad digit in a certain range. The table below lists
the valid pad digits for each PIN block format.

Table 45. Pad Digits for PIN Block Formats

PIN Block Format Output PIN Profile Input PIN Profile

ECI-2 Pad digit is not used Pad digit is not used

ECI-3 Pad digit is not used Pad digit is not used

ISO-0 F Pad digit is not used

ISO-1 Pad digit is not used Pad digit is not used

ISO-2 Pad digit is not used Pad digit is not used

VISA-2 0 through 9 Pad digit is not used

VISA-3 0 through F Pad digit is not used

VISA-4 F Pad digit is not used

3621 0 through F 0 through F

3624 0 through F 0 through F

4704-EPP F Pad digit is not used

Recommendations for the Pad Digit
IBM recommends that you use a nondecimal pad digit in the range of A through F
when processing IBM 3624 and IBM 3621 PIN blocks. If you use a decimal pad
digit, the creator of the PIN block must ensure that the calculated PIN does not
contain the pad digit, or unpredictable results may occur.

Chapter 7. Financial Services 213

For example, you can exclude a specific decimal digit from being in any calculated
PIN by using the IBM 3624 calculation procedure and by specifying a decimalization
table that does not contain the desired decimal pad digit.

Current Key Serial Number
The current key serial number is the concatenation of the initial key serial number
(a 59-bit value) and the encryption counter (a 21-bit value). The concatenation is an
80-bit (10-byte) value. Table 46 shows the format of the current key serial number.

Table 46. Format of a UKPT keyword

Bytes Description

24–33 The current key serial number used to derive the initial PIN
encrypting key.

34–47 Ignored.

Clear PIN Encrypt (CSNBCPE)
The Clear PIN Encrypt callable service formats a PIN into one of the following PIN
block formats and encrypts the results. You can use this service to create an
encrypted PIN block for transmission. With the RANDOM keyword, you can have
the service generate random PIN numbers.

Note: A clear PIN is a sensitive piece of information. Ensure that your application
program and system design provide adequate protection for any clear PIN
value.
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI2 format
v ECI3 format

ICSF routes the Clear PIN Encrypt request to a PCI Cryptographic Coprocessor for
processing. If no PCI Cryptographic Coprocessor is online, the request fails.

Format

CALL CSNBCPE(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encrypting_key_identifier,
rule_array_count,
rule_array,
clear_PIN,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

214 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|
|
|

||

||

||
|

||

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The 64-byte string containing an internal key token or a key label of an internal
key token. The internal key token contains the key that encrypts the PIN block.
The control vector in the internal key token must specify an OPINENC key type
and have the CPINENC usage bit set to 1.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter.

rule_array

Direction: Input Type: Character string

Keywords that provide control information to the callable service. The keyword
is left-justified in an 8-byte field, and padded on the right with blanks. All
keywords must be in contiguous storage. The rule array keywords are shown as
follows:

Clear PIN Encrypt (CSNBCPE)

Chapter 7. Financial Services 215

Table 47. Process Rules for the Clear PIN Encryption Callable Service

Process Rule Description

ENCRYPT This is the default. Use of this keyword is optional.

RANDOM Causes the service to generate a random PIN value.
The length of the PIN is based on the value in the
clear_PIN variable. Set the value of the clear PIN to
zero and use as many digits as the desired random
PIN; pad the remainder of the clear PIN variable with
space characters.

clear_PIN

Direction: Input Type: String

A 16-character string with the clear PIN. The value in this variable must be
left-justified and padded on the right with space characters.

PIN_profile

Direction: Input Type: String

A 24-byte string containing three 8-byte elements with a PIN block format
keyword, a format control keyword (NONE), and a pad digit as required by
certain formats. See “The PIN Profile” on page 212 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte PAN in character format. The service uses this parameter if the PIN
profile specifies the ISO-0 or VISA-4 keyword for the PIN block format.
Otherwise, ensure that this parameter is a 12-byte variable in application
storage. The information in this variable will be ignored, but the variable must
be specified.

Note: When using the ISO-0 keyword, use the 12 rightmost digits of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the
12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction: Input Type: Integer

The 4-byte character integer. The service currently ignores the value in this
variable. For future compatibility, the suggested value is 99999.

encrypted_PIN_block

Direction: Output Type: String

The field that receives the 8-byte encrypted PIN block.

Restrictions
The caller must be in task mode, not in SRB mode.

Clear PIN Encrypt (CSNBCPE)

216 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|
|

|
|
|

The format control specified in the PIN profile must be NONE. If PBVC is specified
as the format control, the service will fail.

Usage Note
SAF will be invoked to check authorization to use the Clear PIN encrypt service and
the label of the PIN_encrypting_key_identifier.

Clear PIN Generate (CSNBPGN)
Use the Clear PIN generate callable service to generate a clear PIN, a PIN
validation value (PVV), or an offset according to an algorithm. You supply the
algorithm or process rule using the rule_array parameter.
v IBM 3624 (IBM-PIN or IBM-PINO)
v IBM German Bank Pool (GBP-PIN or GBP-PINO)
v VISA PIN validation value (VISA-PVV)
v Interbank PIN (INBK-PIN)

The callable service can execute only when ICSF is in special secure mode. This
mode is described in “Special Secure Mode” on page 9.

For guidance information about VISA, see their appropriate publications. The
Interbank PIN algorithm is available only on S/390 Enterprise Servers, the S/390
Multiprise, and the IBM Eserver Zseries.

ICSF routes the Clear PIN Generate request to a PCI Cryptographic Coprocessor if
the control vector of the PIN generating key cannot be processed on the
Cryptographic Coprocessor Feature. If no PCI Cryptographic Coprocessor is online
in this case, the request fails.

Format

CALL CSNBPGN(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
rule_array_count,
rule_array,
PIN_length,
PIN_check_length,
data_array,
returned_result)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Clear PIN Encrypt (CSNBCPE)

Chapter 7. Financial Services 217

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Direction: Input/Output Type: Character string

The 64-byte key label or internal key token that identifies the PIN generation
(PINGEN) key. If the PIN_generating_key_identifier identifies a key which does
not have the default PIN generation key control vector, the request will be
routed to a PCI Cryptographic Coprocessor.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
must be 1.

rule_array

Direction: Input Type: Character string

The process rule provides control information to the callable service. Specify
one of the values in Table 48. The keyword is left-justified in an 8-byte field, and
padded on the right with blanks.

Table 48. Process Rules for the Clear PIN Generate Callable Service

Process Rule Description

GBP-PIN The IBM German Bank Pool PIN, which uses the
institution PINGEN key to generate an institution PIN
(IPIN).

GBP-PINO The IBM German Bank Pool PIN offset, which uses the
pool PINGEN key to generate a pool PIN (PPIN). It
uses the institution PIN (IPIN) as input and calculates
the PIN offset, which is the output.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned
PIN. It does not calculate the PIN offset.

Clear PIN Generate (CSNBPGN)

218 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 48. Process Rules for the Clear PIN Generate Callable Service (continued)

Process Rule Description

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected
PIN and calculates the PIN offset (the output).

INBK-PIN The Interbank PIN is generated.

VISA-PVV The VISA PIN validation value. Input is the customer
PIN.

PIN_length

Direction: Input Type: Integer

The length of the PIN used for the IBM algorithms only, IBM-PIN or IBM-PINO.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16. If
the length is greater than 12, the request will be routed to the PCI
Cryptographic Coprocessor.

PIN_check_length

Direction: Input Type: Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction: Input Type: String

Three 16-byte data elements required by the corresponding rule_array
parameter. The data array consists of three 16-byte fields or elements whose
specification depends on the process rule. If a process rule only requires one or
two 16-byte fields, then the rest of the data array is ignored by the callable
service. Table 49 describes the array elements.

Table 49. Array Elements for the Clear PIN Generate Callable Service

Array Element Description

Clear_PIN Clear user selected PIN of 4 to 12 digits of 0 through
9. Left-justified and padded with spaces. For
IBM-PINO, this is the clear customer PIN (CSPIN).
For GBP-PINO, this is the institution PIN. For
IBM-PIN and GBP-PIN, this field is ignored.

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
digits of 0 through 9.

Clear PIN Generate (CSNBPGN)

Chapter 7. Financial Services 219

Table 49. Array Elements for the Clear PIN Generate Callable Service (continued)

Array Element Description

Trans_sec_parm For VISA only, the leftmost sixteen digits. Eleven
digits of the personal account number (PAN). One
digit key index. Four digits of customer selected PIN.

For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three
digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded
on the right with blanks.

Table 50 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule’s position within the array.

Table 50. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN GBP-PINO VISA-PVV INBK-PIN

Decimalization_table 1 1 1 1

Validation_data 2 2 2 2

Clear_PIN 3 3

Trans_sec_parm 1 1

Note: Generate offset for GBP algorithm is equivalent to IBM offset generation
with PIN_check_length of 4 and PIN_length of 6.

returned_result

Direction: Output Type: Character string

The 16-byte generated output, left-justified and padded on the right with blanks.

Restriction
PIN lengths of 13-16 require the optional PCI Cryptographic Coprocessor.

Usage Note
If you are using the IBM 3624 PIN and IBM German Bank Pool PIN algorithms, you
can supply an unencrypted customer selected PIN to generate a PIN offset.

Related Information
PIN algorithms are shown in PIN Formats and Algorithms.

Clear PIN Generate Alternate (CSNBCPA)
Use the clear PIN generate alternate service to generate a clear VISA PVV (PIN
validation value) from an input encrypted PIN block, or to produce a 3624 offset
from a customer-selected encrypted PIN. The PIN block can be encrypted under
either an input PIN-encrypting key (IPINENC) or an output PIN-encrypting key
(OPINENC). Using an input PIN-encrypting key requires that the NOCV-enablement
keys be present in the CKDS.

Clear PIN Generate (CSNBPGN)

220 z/OS V1R3.0 ICSF Application Programmer’s Guide

If the PIN_encryption_key_identifier identifies a key which does not have the default
PIN encrypting control vector (either IPINENC or OPINENC), the request will be
routed to a PCI Cryptographic Coprocessor for processing. If the IBM-PINO PIN
calculation method is specified, the request will be routed to a PCI Cryptographic
Coprocessor for processing. If PBVC is specified for format control, the request will
be routed to the Cryptographic Coprocessor Feature. If anything is specified other
than the default in the PIN extraction method keyword for the given PIN block
format in rule_array, the request will be routed to the PCI Cryptographic
Coprocessor.

Format

CALL CSNBCPA(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encryption_key_identifier,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array,
returned_PVV)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

Clear PIN Generate Alternate (CSNBCPA)

Chapter 7. Financial Services 221

|
|
|
|
|
|
|
|
|

The data that is passed to the installation exit.

PIN_encryption_key_identifier

Direction: Input/Output Type: String

A 64-byte string consisting of an internal token that contains an IPINENC or
OPINENC key or the label of an IPINENC or OPINENC key that is used to
encrypt the PIN block. If you specify a label, it must resolve uniquely to either
an IPINENC or OPINENC key. If the PIN_encryption_key_identifier identifies a
key which does not have the default PIN encrypting control vector (either
IPINENC or OPINENC), the request will be routed to the PCI Cryptographic
Coprocessor for processing.

PIN_generation_key_identifier

Direction: Input/Output Type: String

A 64-byte string that consists of an internal token that contains a PIN generation
(PINGEN) key or the label of a PINGEN key. If the
PIN_generation_key_identifier identifies a key which does not have the default
PIN generating control vector, the request will be routed to the PCI
Cryptographic Coprocessor for processing.

PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
extract a PIN from a formatted PIN block. The pad digit is needed to extract the
PIN from a 3624 or 3621 PIN block in the clear PIN generate alternate service.
See “The PIN Profile” on page 212 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte field that contains 12 characters of PAN data. The personal account
number recovers the PIN from the PIN block if the PIN profile specifies ISO-0 or
VISA-4 block formats. Otherwise it is ignored, but you must specify this
parameter.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit. For
VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Direction: Input Type: String

An 8-byte field that contains the encrypted PIN that is input to the VISA PVV
generation algorithm. The service uses the IPINENC or OPINENC key that is
specified in the PIN_encryption_key_identifier parameter to encrypt the block.

rule_array_count

Direction: Input Type: Integer

Clear PIN Generate Alternate (CSNBCPA)

222 z/OS V1R3.0 ICSF Application Programmer’s Guide

The number of process rules specified in the rule_array parameter. The value
may be 1 or 2. If the default extraction method for a PIN block format is
desired, you may code the rule array count value as 1.

rule_array

Direction: Input Type: Character string

The process rule for the PIN generation algorithm. Specify IBM-PINO or
“VISA-PVV” (the VISA PIN verification value) in an 8-byte field, left-justified, and
padded with blanks. The rule_array points to an array of one or two 8-byte
elements as follows:

Table 51. Rule Array Elements for the Clear PIN Generate Alternate Service

Rule Array Element Function of Rule Array keyword

1 PIN calculation method

2 PIN extraction method

The first element in the rule array must specify one of the keywords that
indicate the PIN calculation method as shown below:

Table 52. Rule Array Keywords (First Element) for the Clear PIN Generate Alternate
Service

PIN Calculation Method
Keyword Meaning

IBM-PINO This keyword specifies use of the IBM 3624 PIN Offset
calculation method.

VISA-PVV This keyword specifies use of the VISA PVV calculation
method.

If the second element in the rule array is provided, it must specify one of the
PIN extraction method keywords by PIN block format as shown below. The
keyword listed first in a list is the default. If the default extraction method for a
PIN block format is desired, you may code the rule array count value as 1.

Table 53. PIN Extraction Method Keywords

PIN Block Format PIN Extraction Method Keywords

ECI-2 PINLEN04

ECI-3 PINBLOCK

ISO-0 PINBLOCK

ISO-1 PINBLOCK

ISO-2 PINBLOCK

VISA-2 PINBLOCK

VISA-3 PINBLOCK

VISA-4 PINBLOCK

3621 PADDIGIT, HEXDIGIT, PINLEN04 to PINLEN12, PADEXIST

3624 PADDIGIT, HEXDIGIT, PINLEN04 to PINLEN16, PADEXIST

Clear PIN Generate Alternate (CSNBCPA)

Chapter 7. Financial Services 223

|
|
|

|
|
|
|

Table 53. PIN Extraction Method Keywords (continued)

PIN Block Format PIN Extraction Method Keywords

4704-EPP PINBLOCK

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service use one of the following:

v the PIN length, if the PIN block contains a PIN length field

v the PIN delimiter character, if the PIN block contains a PIN delimiter
character.

PADDIGIT
Specifies that the service use the pad value in the PIN profile to identify
the end of the PIN.

HEXDIGIT
Specifies that the service use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENxx
Specifies that the service use the length specified in the keyword,
where xx can range from 4 to 16 digits, to identify the PIN.

PADEXIST
Specifies that the service use the character in the 16th position of the
PIN block as the value of the pad value.

PIN_check_length

Direction: Input Type: Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction: Input Type: String

Three 16-byte elements. Table 54 describes the format when IBM-PINO is
specified. Table 55 on page 225 describes the format when VISA-PVV is
specified.

Table 54. Data Array Elements for the Clear PIN Generate Alternate Service
(IBM-PINO)

Array Element Description

decimalization_table This element contains the decimalization table of 16
characters (0 to 9) that are used to convert hexadecimal
digits (X'0' to X'F') of the enciphered validation data to the
decimal digits X'0' to X'9').

validation_data This element contains one to 16 characters of account data.
The data must be left justified and padded on the right with
space characters.

Clear PIN Generate Alternate (CSNBCPA)

224 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 54. Data Array Elements for the Clear PIN Generate Alternate Service
(IBM-PINO) (continued)

Array Element Description

Reserved-3 This field is ignored, but you must specify it.

Table 55. Data Array Elements for the Clear PIN Generate Alternate Service
(VISA-PVV)

Array Element Description

Trans_sec_parm For VISA-PVV only, the leftmost twelve digits. Eleven digits
of the personal account number (PAN). One digit key index.
The rest of the field is ignored.

Reserved-2 This field is ignored, but you must specify it.

Reserved-3 This field is ignored, but you must specify it.

returned_PVV

Direction: Output Type: Character

A 16-byte area that contains the 4-byte PVV left-justified and padded with
blanks.

Restriction
The IBM-PINO PIN calculation method requires the optional PCI Cryptographic
Coprocessor.

Usage Notes
To use an IPINENC key, you must install the NOCV-enablement keys in the CKDS.

The following table lists the PIN block variant constants (PBVC) to use.

Note: PBVC is supported for compatibility with prior releases of OS/390 ICSF and
existing ICSF applications. If PBVC is specified in the format control
parameter of the PIN profile, the Clear PIN Generate Alternate service will
not be routed to a PCI Cryptographic Coprocessor for processing. This
means that only control vectors and extraction methods valid for the
Cryptographic Coprocessor Feature may be used if PBVC formatting is
desired. It is recommended that a format control of NONE be used for
maximum flexibility.

Table 56. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

3621 X'00000000000084000000000000008400'

3624 X'00000000000082000000000000008200'

Clear PIN Generate Alternate (CSNBCPA)

Chapter 7. Financial Services 225

Table 56. PIN Block Variant Constants (PBVCs) (continued)

PIN Format Name PIN Block Variant Constant (PBVC)

4704-EPP X'00000000000087000000000000008700'

Encrypted PIN Generate (CSNBEPG)
The Encrypted PIN Generate callable service formats a PIN and encrypts the PIN
block. To generate the PIN, the service uses one of the following PIN calculation
methods:
v IBM 3624 PIN
v IBM German Bank Pool Institution PIN
v Interbank PIN

To format the PIN, the service uses one of the following PIN block formats:
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI-1 formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI-2 format
v ECI-3 format

ICSF routes the Encrypted PIN Generate request to a PCI Cryptographic
Coprocessor for processing. If no PCI Cryptographic Coprocessor is online, the
request fails.

Format

CALL CSNBEPG(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
outbound_PIN_encrypting_key_identifier
rule_array_count,
rule_array,
PIN_length,
data_array,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

Clear PIN Generate Alternate (CSNBCPA)

226 z/OS V1R3.0 ICSF Application Programmer’s Guide

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Direction: Input/Output Type: String

The 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the PIN-generating key. The control
vector must specify the PINGEN key type and have the EPINGEN usage bit set
to 1.

outbound_PIN_encrypting_key_identifier

Direction: Input Type: String

A 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the key to be used to encrypt the
formatted PIN and must contain a control vector that specifies the OPINENC
key type and has the EPINGEN usage bit set to 1.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1.

rule_array

Direction: Input Type: Character string

Keywords that provide control information to the callable service. Each keyword
is left-justified in an 8-byte field, and padded on the right with blanks. All
keywords must be in contiguous storage. The rule array keywords are shown as

Encrypted PIN Generate (CSNBEPG)

Chapter 7. Financial Services 227

follows:

Table 57. Process Rules for the Encrypted PIN Generate Callable Service

Process Rule Description

GBP-PIN This keyword specifies the IBM German Bank Pool
Institution PIN calculation method is to be used to
generate a PIN.

IBM-PIN This keyword specifies the IBM 3624 PIN calculation
method is to be used to generate a PIN.

INBK-PIN This keyword specifies the Interbank PIN calculation
method is to be used to generate a PIN.

PIN_length

Direction: Input Type: Integer

A integer defining the PIN length for those PIN calculation methods with
variable length PINs; otherwise, the variable should be set to zero.

data_array

Direction: Input Type: String

Three 16-byte character strings, which are equivalent to a single 48-byte string.
The values in the data array depend on the keyword for the PIN calculation
method. Each element is not always used, but you must always declare a
complete data array. The numeric characters in each 16-byte string must be
from 1 to 16 bytes in length, uppercase, left-justified, and padded on the right
with space characters. Table 58 describes the array elements.

Table 58. Array Elements for the Encrypted PIN Generate Callable Service

Array Element Description

Clear_PIN Clear user selected PIN of 4 to 12 digits of 0 through
9. Left-justified and padded with spaces. For
IBM-PINO, this is the clear customer PIN (CSPIN).
For GBP-PINO, this is the institution PIN. For
IBM-PIN and GBP-PIN, this field is ignored.

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
characters that are used to map the hexadecimal
digits (X'0' to X'F') of the encrypted validation data to
decimal digits (X'0' to X'9').

Trans_sec_parm For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three
digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded
on the right with blanks.

Table 59 on page 229 lists the data array elements required by the process rule
(rule_array parameter). The numbers refer to the process rule’s position within
the array.

Encrypted PIN Generate (CSNBEPG)

228 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 59. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN GBP-PINO VISA-PVV INBK-PIN

Decimalization_table 1 1 1 1

Validation_data 2 2 2 2

Clear_PIN 3 3

Trans_sec_parm 1 1

PIN_profile

Direction: Input Type: String array

A 24-byte string containing the PIN profile including the PIN block format. See
“The PIN Profile” on page 212 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte string that contains 12 digits of Personal Account Number (PAN) data.
The service uses this parameter if the PIN profile specifies the ISO-0 or VISA-4
keyword for the PIN block format. Otherwise, ensure that this parameter is a
4-byte variable in application storage. The information in this variable will be
ignored, but the variable must be specified.

Note: When using the ISO-0 keyword, use the 12 rightmost digit of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the
12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction: Input Type: Integer

The 4-byte string that contains the sequence number used by certain PIN block
formats. The service uses this parameter if the PIN profile specifies the 3621 or
4704-EPP keyword for the PIN block format. Otherwise, ensure that this
parameter is a 4-byte variable in application data storage. The information in
the variable will be ignored, but the variable must be declared. To enter a
sequence number, do the following:

v Enter 99999 to use a random sequence number that the service generates.

v For the 3621 PIN block format, enter a value in the range from 0 to 65535.

v For the 4704-EPP PIN block format, enter a value in the range from 0 to 255.

encrypted_PIN_block

Direction: Output Type: String

The field where the service returns the 8-byte encrypted PIN.

Restrictions
The caller must be in task mode, not in SRB mode.

Encrypted PIN Generate (CSNBEPG)

Chapter 7. Financial Services 229

The format control specified in the PIN profile must be NONE. If PBVC is specified
as the format control, the service will fail.

Usage Note
SAF will be invoked to check authorization to use the Encrypted PIN Generate
service and any key labels specified as input.

Encrypted PIN Translate (CSNBPTR)
Use the encrypted PIN translate callable service to reencipher a PIN block from one
PIN-encrypting key to another and, optionally, to change the PIN block format, such
as the pad digit or sequence number.

The encrypted PIN translate service can be used for unique-key-per-transaction
(UKPT) key derivation. UKPT is supported for the
input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier
parameters for both REFORMAT and TRANSLAT process rules. The rule_array
keyword determines which PIN key(s) are derived UKPT key(s).

ICSF routes the encrypted PIN translate request to a PCI Cryptographic
Coprocessor if the control vector in a supplied PIN encrypting key cannot be
processed on the Cryptographic Coprocessor Feature. UKPT support requires a
PCI Cryptographic Coprocessor. If one is not active, the request fails. The request
is also routed to a PCI Cryptographic Coprocessor if the PIN profile specifies the
ISO-2 PIN block format. If no PCI Cryptographic Coprocessor is active in this case,
the request fails. If PBVC is specified for format control, the request will be routed
to the Cryptographic Coprocessor Feature. If anything is specified other than the
default in the PIN extraction method keyword for the given PIN block format in
rule_array, the request will be routed to the PCI Cryptographic Coprocessor.

Format

CALL CSNBPTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
output_PIN_encrypting_key_identifier,
input_PIN_profile,
PAN_data_in,
PIN_block_in,
rule_array_count,
rule_array,
output_PIN_profile,
PAN_data_out,
sequence_number,
PIN_block_out)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

Encrypted PIN Generate (CSNBEPG)

230 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The input PIN-encrypting key (IPINENC) for the PIN_block_in parameter
specified as a 64-byte internal key token or a key label. If keyword UKPTIPIN or
UKPTBOTH is specified in the rule_array, then the
input_PIN_encrypting_key_identifier must specify a key token or key label of a
KEYGENKY with the UKPT usage bit enabled. If the
input_PIN_encrypting_key_identifier identifies a key which does not have the
default input PIN encrypting key control vector (IPINENC), the request will be
routed to a PCI Cryptographic Coprocessor.

output_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The output PIN-encrypting key (OPINENC) for the PIN_block_out parameter
specified as a 64-byte internal key token or a key label. If keyword UKPTOPIN
or UKPTBOTH is specified in the rule_array, then the
output_PIN_encrypting_key_identifier must specify a key token or key label of a
KEYGENKY with the UKPT usage bit enabled. If the
output_PIN_encrypting_key_identifier identifies a key which does not have the
default output PIN encrypting key control vector (OPINENC), the request will be
routed to a PCI Cryptographic Coprocessor.

input_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN

Encrypted PIN Translate (CSNBPTR)

Chapter 7. Financial Services 231

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

profile depending on whether the PIN block is being enciphered or deciphered
by the callable service. See “The PIN Profile” on page 212 for additional
information.

If you choose the TRANSLAT processing rule in the rule_array parameter, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. If you choose the REFORMAT processing rule in the rule_array
parameter, the input PIN profile and output PIN profile can have different PIN
block formats. If you specify UKPTIPIN or UKPTBOTH in the rule_array
parameter, then the input_PIN_profile is extended to a 48-byte field and must
contain the current key serial number. See “The PIN Profile” on page 212 for
additional information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in the
Encrypted PIN translate callable service with a process rule (rule_array
parameter) of REFORMAT. If the process rule is TRANSLAT, the pad digit is
ignored.

PAN_data_in

Direction: Input Type: Character string

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the input PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

PIN_block_in

Direction: Input Type: String

The 8-byte enciphered PIN block that contains the PIN to be translated.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction: Input Type: Character string

The process rule for the callable service.

Table 60. Keywords for Encrypted PIN Translate

Keyword Meaning

Processing Rules (required)

REFORMAT Changes the PIN format, the contents of the PIN block,
and the PIN-encrypting key.

Encrypted PIN Translate (CSNBPTR)

232 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|
|
|
|
|

|
|

|

||

||

|

||
|

Table 60. Keywords for Encrypted PIN Translate (continued)

Keyword Meaning

TRANSLAT Changes the PIN-encrypting key only. It does not change
the PIN format and the contents of the PIN block.

PIN Block Format and PIN Extraction Method (optional)
Note: If a PIN extraction method is not specified, the first one listed for each PIN block
format will be the default.

ECI-2 PINLEN04 The PIN extraction method
keywords specify a PIN
extraction method for a
PINLEN04 format.

ECI-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-0 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-1 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-4 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

3621 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN12,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3621 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

3624 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN16,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3624 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

Encrypted PIN Translate (CSNBPTR)

Chapter 7. Financial Services 233

|

||

||
|

|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

||
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|

Table 60. Keywords for Encrypted PIN Translate (continued)

Keyword Meaning

4704-EPP PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

UKPT Keywords (optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is to be derived
using the UKPT algorithm. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

UKPTOPIN The output_PIN_encrypting_key_identifier is to be derived
using the UKPT algorithm. The
output_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
output_PIN_profile must be 48 bytes and contain the key
serial number.

UKPTBOTH Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier are derived using
the UKPT algorithm. Both the
input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier must be
KEYGENKY keys with the UKPT usage bit enabled. Both
the input_PIN_profile and the output_PIN_profile must be
48 bytes and contain the respective key serial number.

output_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN
profile, depending on whether the PIN block is being enciphered or deciphered
by the callable service.

If you choose the TRANSLAT processing rule in the rule_array parameter, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. If you choose the REFORMAT processing rule in the rule_array
parameter, the input PIN profile and output PIN profile can have different PIN
block formats. If you specify UKPTOPIN or UKPTBOTH in the rule_array
parameter, then the output_PIN_profile is extended to a 48-byte field and must
contain the current key serial number. See “The PIN Profile” on page 212 for
additional information.

PAN_data_out

Direction: Input Type: Character string

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the output PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

Encrypted PIN Translate (CSNBPTR)

234 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

||

|||
|
|
|

|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

sequence_number

Direction: Input Type: Integer

The sequence number if the process rule (rule_array parameter) is REFORMAT
and the output PIN block format is 3621 or 4704-EPP only. Specify the integer
value 99999. Otherwise, this parameter is ignored.

PIN_block_out

Direction: Output Type: String

The 8-byte output PIN block that is reenciphered.

Restriction
Use of the ISO-2 PIN block format requires the optional PCI Cryptographic
Coprocessor.

Use of the UKPT keywords require the optional PCI Cryptographic Coprocessor.

Usage Notes
Some PIN block formats are known by several names. The following table shows
the additional names.

Table 61. Additional Names for PIN Formats

PIN Format Additional Name

ISO-0 ANSI X9.8, VISA format 1, ECI format 1

ISO-1 ECI format 4

The following table lists the PIN block variant constants (PBVC) to be used.

Note: PBVC is supported for compatibility with prior releases of OS/390 ICSF and
existing ICSF applications. If PBVC is specified in the format control
parameter of the PIN profile, the Encrypted PIN translate service will not be
routed to a PCI Cryptographic Coprocessor for processing. This means that
only control vectors and extraction methods valid for the Cryptographic
Coprocessor Feature may be used if PBVC formatting is desired. It is
recommended that a format control of NONE be used for maximum flexibility.

Table 62. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

Encrypted PIN Translate (CSNBPTR)

Chapter 7. Financial Services 235

|

Table 62. PIN Block Variant Constants (PBVCs) (continued)

PIN Format Name PIN Block Variant Constant (PBVC)

3621 X'00000000000084000000000000008400'

3624 X'00000000000082000000000000008200'

4704-EPP X'00000000000087000000000000008700'

Encrypted PIN Verify (CSNBPVR)
Use the Encrypted PIN verify callable service to verify that one of the following
customer selected trial PINs is valid:
v IBM 3624 (IBM-PIN)
v IBM 3624 PIN offset (IBM-PINO)
v IBM German Bank Pool (GBP-PIN)
v IBM German Bank Pool PIN offset (GBP-PINO)
v VISA PIN validation value (VISA-PVV)
v Interbank PIN (INBK-PIN)

UKPT is supported for the Encrypted PIN Verify service through the
input_PIN_encrypting_key_identifier parameter and keyword UKPTIPIN.

ICSF routes the Encrypted PIN verify request to a PCI Cryptographic Coprocessor if
the control vector in a supplied PIN key cannot be processed on the Cryptographic
Coprocessor Feature. The request is also routed to a PCI Cryptographic
Coprocessor if the PIN profile specifies the ISO-2 PIN block format. If no PCI
Cryptographic Coprocessor is online in this case, the request fails. If PBVC is
specified for format control, the request will be routed to the Cryptographic
Coprocessor Feature. If anything is specified other than the default in the PIN
extraction method keyword for the given PIN block format in rule_array, the request
will be routed to the PCI Cryptographic Coprocessor.

UKPT support requires a PCI Cryptographic Coprocessor. If one is not active, the
request fails.

Format

CALL CSNBPVR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
PIN_verifying_key_identifier,
input_PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array)

Parameters
return_code

Direction: Output Type: Integer

Encrypted PIN Translate (CSNBPTR)

236 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|

|
|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token containing the PIN-encrypting key
(IPINENC) that enciphers the PIN block. If the
input_PIN_encrypting_key_identifier identifies a key which does not have the
default PIN encrypting key control vector (IPINENC), the request will be routed
to a PCI Cryptographic Coprocessor. If keyword UKPTIPIN is specified in the
rule_array, then the input_PIN_encrypting_key_identifier must specify a key
token or key label of a KEYGENKY with the UKPT usage bit enabled.

PIN_verifying_key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token that identifies the PIN verify
(PINVER) key. If the PIN_verifying_key_identifier identifies a key which does not
have the default PIN verify key control vector, the request will be routed to a
PCI Cryptographic Coprocessor.

input_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered

Encrypted PIN Verify (CSNBPVR)

Chapter 7. Financial Services 237

|
|
|
|
|
|
|

|
|
|
|

by the callable service. If you specify UKPTIPIN in the rule_array parameter,
then the input_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 212 for additional
information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in the
encrypted PIN verify callable service.

PAN_data

Direction: Input Type: Character string

The personal account number (PAN) is required for ISO-0 and VISA-4 only.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Direction: Input Type: String

The 8-byte enciphered PIN block that contains the PIN to be verified.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction: Input Type: Character string

The process rule for the PIN verify algorithm.

Table 63. Keywords for Encrypted PIN Verify

Keyword Meaning

Algorithm Value (required)

GBP-PIN The IBM German Bank Pool PIN. It verifies the PIN
entered by the customer and compares that PIN with the
institution generated PIN by using an institution key.

GBP-PINO The IBM German Bank Pool PIN offset. It verifies the PIN
entered by the customer by comparing with the calculated
institution PIN (IPIN) and adding the specified offset to
the pool PIN (PPIN) generated by using a pool key.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN.
It does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected
PIN and calculates the PIN offset.

INBK-PIN The Interbank PIN verify algorithm.

Encrypted PIN Verify (CSNBPVR)

238 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|

|
|

||

||

|

||
|
|

||
|
|
|

||
|

||
|

||

Table 63. Keywords for Encrypted PIN Verify (continued)

Keyword Meaning

VISA-PVV The VISA PIN verify value.

PIN Block Format and PIN Extraction Method (optional)
Note: If a PIN extraction method is not specified, the first one listed for each PIN block
format will be the default.

ECI-2 PINLEN04 The PIN extraction method
keywords specify a PIN
extraction method for a
PINLEN04 format.

ECI-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-0 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-1 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-4 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

3621 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN12,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3621 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

3624 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN16,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3624 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

Encrypted PIN Verify (CSNBPVR)

Chapter 7. Financial Services 239

|

||

||

|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

||
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|

Table 63. Keywords for Encrypted PIN Verify (continued)

Keyword Meaning

4704-EPP PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

UKPT Keywords (optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is to be derived
using the UKPT algorithm. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

PIN_check_length

Direction: Input Type: Integer

The PIN check length for the IBM-PIN or IBM-PINO process rules only.
Otherwise, it is ignored. Specify the rightmost digits, 4 through 16, for the PIN
to be verified.

data_array

Direction: Input Type: String

Three 16-byte elements required by the corresponding rule_array parameter.
The data array consists of three 16-byte fields whose specification depend on
the process rule. If a process rule only requires one or two 16-byte fields, then
the rest of the data array is ignored by the callable service. Table 64 describes
the array elements.

Table 64. Array Elements for the Encrypted PIN Verify Callable Service

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen decimal
digits of 0 through 9.

PIN_offset Offset data for IBM-PINO and GBP-PINO. One to twelve
numeric characters, 0 through 9, left-justified and padded on
the right with blanks. For IBM-PINO, the PIN offset length is
specified in the PIN_check_length parameter. For
GBP-PINO, the PIN offset is always 4 digits. For IBM-PIN
and GBP-PIN, the field is ignored.

trans_sec_parm For VISA, only the leftmost twelve digits of the 16-byte field
are used. These consist of the rightmost eleven digits of the
personal account number (PAN) and a one-digit key index.
The remaining four characters are ignored.

For Interbank only, all 16 bytes are used. These consist of
the rightmost eleven digits of the PAN, a constant of X'6', a
one-digit key index, and three numeric digits of PIN
validation data.

RPVV For VISA-PVV only, referenced PVV (4 bytes) that is
left-justified. The rest of the field is ignored.

Encrypted PIN Verify (CSNBPVR)

240 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

||

|||
|
|
|

|

||
|
|
|
|
|
|

Table 64. Array Elements for the Encrypted PIN Verify Callable Service (continued)

Array Element Description

Validation_data Validation data for IBM and GBP padded to 16 bytes. One
to sixteen characters of hexadecimal account data
left-justified and padded on the right with blanks.

Table 65 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule’s position within the array.

Table 65. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN GBP-PINO VISA-PVV INBK-PIN

Decimalization_table 1 1 1 1

PIN_offset 3 3 3 3

RPVV 2

Trans_sec_parm 1 1

Validation_data 2 2 2 2

Restrictions
GBP-PINO is only supported if the CSNBPVR service is processed on the
Cryptographic Coprocessor Feature. If the service is routed to a PCI Cryptographic
Coprocessor, the service request will fail if the GBP-PINO calculation method is
specified.

Use of the ISO-2 PIN block format requires the optional PCI Cryptographic
Coprocessor.

Use of the UKPTIPIN keyword requires the optional PCI Cryptographic
Coprocessor.

Usage Notes
The following table lists the PIN block variant constants (PBVC) to be used.

Note: PBVC is supported for compatibility with prior releases of OS/390 ICSF and
existing ICSF applications. If PBVC is specified in the format control
parameter of the PIN profile, the Encrypted PIN Verify service will not be
routed to a PCI Cryptographic Coprocessor for processing. This means that
only control vectors and extraction methods valid for the Cryptographic
Coprocessor Feature may be used if PBVC formatting is desired. It is
recommended that a format control of NONE be used for maximum flexibility.

Table 66. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

3621 X'00000000000084000000000000008400'

Encrypted PIN Verify (CSNBPVR)

Chapter 7. Financial Services 241

|
|

Table 66. PIN Block Variant Constants (PBVCs) (continued)

PIN Format Name PIN Block Variant Constant (PBVC)

3624 X'00000000000082000000000000008200'

4704-EPP X'00000000000087000000000000008700'

Related Information
PIN Formats and Algorithms discusses the PIN algorithms in detail.

Secure Messaging for Keys (CSNBSKY)
The Secure Messaging for Keys callable service will encrypt a text block including a
clear key value decrypted from an internal or external DES token. The text block is
normally a ″Value″ field of a secure message TLV (Tag/Length/Value) element of a
secure message. TLV is defined in ISO/IEC 7816-4.

Processing for this service is routed to the PCI Cryptographic Coprocessor. Keys
only appear in the clear within the secure boundary of the PCI Cryptographic
Coprocessor, and never in host storage.

Format

CALL CSNBSKY(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_identifier,
key_encrypting_key_identifier,
secmsg_key_identifier,
text_length,
clear_text,
initialization_vector,
key_offset,
key_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

Encrypted PIN Verify (CSNBPVR)

242 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0 and 1.

rule_array

Direction: Input Type: Character String

Keywords that provides control information to the callable service. The
processing method is the encryption mode used to encrypt the message.

Table 67. Rule Array Keywords for Secure Messaging for Keys

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

input_key_identifier

Direction: Input/Output Type: String

The internal token, external token, or key label of an internal token of a double
length DES key. The key is recovered in the clear and placed in the text to be
encrypted. The control vector of the DES key must not prohibit export.

key_encrypting_key_identifier

Direction: Input/Output Type: String

If the input_key_identifier is an external token, then this parameter is the
internal token or the key label of the internal token of IMPORTER or
EXPORTER. If it is not, it is a null token. If a key label is specified, the key
label must be unique.

secmsg_key_identifier

Direction: Input/Output Type: String

Secure Messaging for Keys (CSNBSKY)

Chapter 7. Financial Services 243

The internal token or key label of a secure message key for encrypting keys.
This key is used to encrypt the updated clear_text containing the recovered
DES key.

text_length

Direction: Input Type: Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

clear_text

Direction: Input Type: String

Clear text that contains the recovered DES key at the offset specified and is
then encrypted. Any padding or formatting of the message must be done by the
caller on input.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text before
encryption. This field is ignored for TDES-ECB mode.

key_offset

Direction: Input Type: Integer

The offset within the clear_text parameter at key_offset where the recovered
clear input_key_identifier value is to be placed. The first byte of the clear_text
field is offset 0.

key_offset_field_length

Direction: Input Type: Integer

The length of the field within clear_text parameter at key_offset where the
recovered clear input_key_identifier value is to be placed. Length must be a
multiple of eight and is equal to the key length of the recovered key. The key
must fit entirely within the clear_text.

enciphered_text

Direction: Output Type: String

The field where the enciphered text is returned. The length of this field must be
at least as long as the clear_text field.

output_chaining_vector

Direction: Output Type: String

Secure Messaging for Keys (CSNBSKY)

244 z/OS V1R3.0 ICSF Application Programmer’s Guide

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Restrictions
v This service requires at least one PCI Cryptographic Coprocessor to be installed

and active.

v Caller must be task mode and must not be SRB mode.

Usage Notes
v SAF will be invoked to check authorization to use the secure messaging for keys

service and any key labels specified as input.

Secure Messaging for PINs (CSNBSPN)
The Secure Messaging for PINs callable service will encrypt a text block including a
clear PIN block recovered from an encrypted PIN block. The input PIN block will be
reformatted if the block format in the input_PIN_profile is different than the block
format n the output_PIN_profile. The clear PIN block will only be self encrypted if
the SELFENC keyword is specified in the rule_array. The text block is normally a
″Value″ field of a secure message TLV (Tag/Length/Value) element of a secure
message. TLV is defined in ISO/IEC 7816-4.

Processing for this service is routed to the PCI Cryptographic Coprocessor. PINs
only appear in the clear within the secure boundary of the PCI Cryptographic
Coprocessor, and never in host storage.

Format

CALL CSNBSPN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PIN_block,
PIN_encrypting_key_identifier,
input_PIN_profile,
input_PAN_data,
secmsg_key_identifier,
output_PIN_profile,
output_PAN_data,
text_length,
clear_text,
initialization_vector,
PIN_offset,
PIN_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction: Output Type: Integer

Secure Messaging for Keys (CSNBSKY)

Chapter 7. Financial Services 245

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0, 1, or 2.

rule_array

Direction: Input Type: Character String

Keywords that provide control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keywords are left justified and padded on the right with blanks.

Table 68. Rule Array Keywords for Secure Messaging for PINs

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

PIN encryption (optional)

CLEARPIN Recovered clear input PIN block (may be reformatted) is
placed in the clear in the message for encryption with the
secure message key (default).

SELFENC Recovered clear input PIN block (may be reformatted) is
self-encrypted and then placed in the message for encryption
with the secure message key.

Secure Messaging for PINs (CSNBSPN)

246 z/OS V1R3.0 ICSF Application Programmer’s Guide

input_PIN_block

Direction: Input Type: String

The 8-byte input PIN block that is to be recovered in the clear and perhaps
reformatted, and then placed in the clear_text to be encrypted.

PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The internal token or key label of the internal token of the PIN encrypting key
used in encrypting the input_PIN_block. The key must be an IPINENC key.

input_PIN_profile

Direction: Input Type: Character String

The three 8-byte character elements that contain information necessary to
extract the PIN from a formatted PIN block. The valid input PIN formats are
ISO-0, ISO-1, and ISO-2. See “The PIN Profile” on page 212 for additional
information.

input_PAN_data

Direction: Input Type: Character String

The 12 digit personal account number (PAN) if the input PIN format is ISO-0
only. Otherwise, the parameter is ignored.

secmsg_key_identifier

Direction: Input/Output Type: String

The internal token or key label of an internal token of a secure message key for
encrypting PINs. This key is used to encrypt the updated clear_text.

output_PIN_profile

Direction: Input Type: String

The three 8-byte character elements that contain information necessary to
create a formatted PIN block. If reformatting is not required, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. Output PIN block formats supported are ISO-0, ISO-1, and ISO-2.

output_PAN_data

Direction: Input Type: String

The 12 digit personal account number (PAN) if the output PIN format is ISO-0
only. Otherwise, this parameter is ignored.

Secure Messaging for PINs (CSNBSPN)

Chapter 7. Financial Services 247

text_length

Direction: Input Type: Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

clear_text

Direction: Input Type: String

Clear text that contains the recovered and/or reformatted/encrypted PIN at
offset specified and then encrypted. Any padding or formatting of the message
must be done by the caller on input.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text before
encryption. This field is ignored for TDES-ECB mode.

PIN_offset

Direction: Input Type: Integer

The offset within the clear_text parameter where the reformatted PIN block is to
be placed. The first byte of the clear_text field is offset 0.

PIN_offset_field_length

Direction: Input Type: Integer

The length of the field within clear_text parameter at PIN_offset where the
recovered clear input_PIN_block value is to be placed. The PIN block may be
self-encrypted if requested by the rule array. Length must be eight. The PIN
block must fit entirely within the clear_text.

enciphered_text

Direction: Output Type: String

The field where the enciphered text is returned. The length of this field must be
at least as long as the clear_text field.

output_chaining_vector

Direction: Output Type: String

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Secure Messaging for PINs (CSNBSPN)

248 z/OS V1R3.0 ICSF Application Programmer’s Guide

Restrictions
v This service requires at least one PCI Cryptographic Coprocessor to be installed

and active.

v Caller must be task mode and must not be SRB mode.

Usage Notes
v SAF will be invoked to check authorization to use the secure messaging for PINs

service and any key labels specified as input.

SET Block Compose (CSNDSBC)
The SET Block Compose callable service performs DES-encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

This service routes the request to a PCI Cryptographic Coprocessor to perform the
RSA-OAEP processing. If there are no PCI Cryptographic Coprocessors online, the
request is routed to the Cryptographic Coprocessor Feature.

Format

CALL CSNDSBC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
block_contents_identifier,
XData_string_length,
XData_string,
data_to_encrypt_length,
data_to_encrypt,
data_to_hash_length,
data_to_hash,
initialization_vector,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
DES_key_block_length,
DES_key_block,
RSA_OAEP_block_length,
RSA_OAEP_block,
chaining_vector,
DES_encrypted_data_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Secure Messaging for PINs (CSNBSPN)

Chapter 7. Financial Services 249

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be at least 1.

rule_array

Direction: Input Type: Character String

Keywords that provides control information to the callable service. The keyword
must be in 8 bytes of contiguous storage, left-justified and padded on the right
with blanks.

Table 69. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES encryption only is to be performed; no RSA-OAEP
formatting will be performed. (See Usage Notes.)

block_contents_identifier

Direction: Input Type: String

A one-byte string, containing a binary value that will be copied into the Block
Contents (BC) field of the SET DB data block (indicates what data is carried in
the Actual Data Block, ADB, and the format of any extra data (XData_string)).
This parameter is ignored if DES-ONLY is specified in the rule-array.

SET Block Compose (CSNDSBC)

250 z/OS V1R3.0 ICSF Application Programmer’s Guide

XData_string_length

Direction: Input Type: Integer

The length in bytes of the data contained within XData_string. The maximum
length is 94 bytes. This parameter is ignored if DES-ONLY is specified in the
rule-array.

XData_string

Direction: Input Type: String

Extra-encrypted data contained within the OAEP-processed and RSA-encrypted
block. The format is indicated by block_contents_identifier. For a
XData_string_length value of zero, XData_string must still be specified, but will
be ignored by ICSF. The string is treated as a string of hexadecimal digits. This
parameter is ignored if DES-ONLY is specified in the rule-array.

data_to_encrypt_length

Direction: Input/Output Type: Integer

The length in bytes of data that is to be DES-encrypted. The length has a
maximum value of 32 MB minus 8 bytes to allow for up to 8 bytes of padding.
The data is identified in the data_to_encrypt parameter. On output, this value is
updated with the length of the encrypted data in the
DES_encrypted_data_block.

data_to_encrypt

Direction: Input Type: String

The data that is to be DES-encrypted (with a 64-bit DES key generated by this
service). The data will be padded by this service according to the PKSC #5
padding rules.

data_to_hash_length

Direction: Input Type: Integer

The length in bytes of the data to be hashed. The hash is an optional part of
the OAEP block. If the data_to_hash_length is 0, no hash will be included in the
OAEP block. This parameter is ignored if DES-ONLY is specified in the
rule_array parameter.

data_to_hash

Direction: Input Type: String

The data that is to be hashed and included in the OAEP block. No hash is
computed or inserted in the OAEP block if the data_to_hash_length is 0. This
parameter is ignored if DES-ONLY is specified in the rule_array parameter.

SET Block Compose (CSNDSBC)

Chapter 7. Financial Services 251

initialization_vector

Direction: Input Type: String

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES encryption of the data in the data_to_encrypt
parameter. The same initialization vector must be used to perform the DES
decryption of the data.

RSA_public_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_public_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_public_key_identifier

Direction: Input Type: String

A string containing either the key label of the RSA public key or the RSA public
key token to be used to perform the RSA encryption of the OAEP block. The
modulus bit length of the key must be 1024 bytes. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction: Input/Output Type: Integer

The length of the DES_key_block. The current length of this field is defined to
be exactly 64 bytes.

DES_key_block

Direction: Input/Output Type: String

The DES key information returned from a previous SET Block Compose
service. The contents of the DES_key_block is the 64-byte DES internal key
token (containing the DES key enciphered under the host master key). Your
application program must not change the data in this string.

RSA_OAEP_block_length

Direction: Input/Output Type: Integer

The length of a block of storage to hold the RSA-OAEP_block. The length must
be at least 128 bytes on input. The length value will be updated on exit with the
actual length of the RSA-OAEP_block, which is exactly 128 bytes. This
parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction: Output Type: String

SET Block Compose (CSNDSBC)

252 z/OS V1R3.0 ICSF Application Programmer’s Guide

The OAEP-formatted data block, encrypted under the RSA public key passed
as RSA_public_key_identifier. When the OAEP-formatted data block is returned,
it is left justified within the RSA-OAEP_block field if the input field length
(RSA-OAEP_block_length) was greater than 128 bytes. This parameter is
ignored if DES-ONLY is specified in the rule-array.

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

DES_encrypted_data_block

Direction: Output Type: String

The DES-encrypted data block (data passed in as data_to_encrypt). The length
of the encrypted data is returned in data_to_encrypt_length. The
DES_encrypted_data_block may be 8 bytes longer than the length of the
data_to_encrypt because of padding added by this service.

Restrictions
v Caller must be task mode and must not be SRB mode.

v Not all CCA implementations support a key label as input in the
RSA_public_key_identifier parameter. Some implementations may only support a
key token.

v The data_to_encrypt and the DES_encrypted_data_block cannot overlap.

v NOCV keys must be installed in the CKDS to use SET block compose service on
a CDMF-only system.

Usage Notes
v RACF will be invoked to check authorization to use the SET Block Compose

service.

v The first time the SET Block Compose service is invoked to form an RSA-OAEP
block and DES-encrypt data for communication between a specific source and
destination (for example, between the merchant and payment gateway), do not
specify the DES-ONLY keyword. A DES key will be generated by the service and
returned in the key token contained in the DES_key_block. On subsequent calls
to the Compose SET Block service for communication between the same source
and destination, the DES key can be re-used. The caller of the service must
supply the DES_key_block, the DES_key_block_length, the data_to_encrypt, the
data_to_encrypt_length, and the rule-array keywords SET1.00 and DES-ONLY.
You do not need to supply the block contents identifier, XDATA string and length,
RSA-OAEP block and length, and RSA public key information, although you must
still specify the parameters. For this invocation, the RSA-OAEP formatting is
bypassed and only DES encryption is performed, using the supplied DES key.

SET Block Decompose (CSNDSBD)
Decomposes the RSA-OAEP block and the DES-encrypted data block of the SET
protocol to provide unencrypted data back to the caller.

SET Block Compose (CSNDSBC)

Chapter 7. Financial Services 253

The SET block decompose callable service will route the request to a PCI
Cryptographic Coprocessor for RSA-OAEP processing if there is a PCI
Cryptographic Coprocessor available. The service has a preference for being
processed on a PCI Cryptographic Coprocessor so that the symmetric key does not
appear in the clear. If there is no PCI Cryptographic Coprocessor available, the
request will be processed on the Cryptographic Coprocessor Feature, unless the
RSA_private_key_identifier specifies a retained private key or a CRT form private
key with private key section identifier of X'08', or unless the PINBLOCK rule array
keyword was specified. These cases require a PCI Cryptographic Coprocessor, and
the service will fail if no PCI Cryptographic Coprocessor is available.

Format

CALL CSNDSBD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_OAEP_block_length,
RSA_OAEP_block,
DES_encrypted_data_block_length,
DES_encrypted_data_block,
initialization_vector,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
DES_key_block_length,
DES_key_block,
block_contents_identifier,
XData_string_length,
XData_string,
chaining_vector,
data_block,
hash_block_length,
hash_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” on page 335 lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” on page 335 lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

SET Block Decompose (CSNDSBD)

254 z/OS V1R3.0 ICSF Application Programmer’s Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be at least 1.

rule_array

Direction: Input Type: String

One keyword that provides control information to the callable service. The
keyword indicates the block type. The keyword must be in 8 bytes of contiguous
storage, left-justified and padded on the right with blanks.

Table 70. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES decryption only is to be performed; no RSA-OAEP block
decryption will be performed. (See Usage Notes.)

PINBLOCK Specifies that the OAEP block will contain PIN information in
the XDATA field, including an ISO-0 format PIN block. The
DES_key_block must be 128 bytes in length and contain a
IPINENC or OPINENC key. The PIN block will be encrypted
under the PIN encrypting key. The PIN information and the
encrypted PIN block are returned in the XDATA_string
parameter.

RSA_OAEP_block_length

Direction: Input Type: Integer

The length of RSA-OAEP_block must be 128 bytes. This parameter is ignored if
DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction: Input Type: String

The RSA-encrypted OAEP-formatted data block. This parameter is ignored if
DES-ONLY is specified in the rule-array.

SET Block Decompose (CSNDSBD)

Chapter 7. Financial Services 255

DES_encrypted_data_block_length

Direction: Input/Output Type: Integer

The length in bytes of the DES-encrypted data block. The input length must be
a multiple of 8 bytes. Updated on return to the length of the decrypted data
returned in data_block. The maximum value of
DES_encrypted_data_block_length is 32MB bytes.

DES_encrypted_data_block

Direction: Input Type: String

The DES-encrypted data block. The data will be decrypted and passed back as
data_block.

initialization_vector

Direction: Input Type: String

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES decryption of the data in the
DES_encrypted_data_block parameter. You must use the same initialization
vector that was used to perform the DES encryption of the data.

RSA_private_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_private_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_private_key_identifier

Direction: Input Type: String

A key label of the RSA private key or an internal token of the RSA private key
to be used to decipher the RSA-OAEP block passed in RSA-OAEP_block. The
modulus bit length of the key must be 1024. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction: Input/Output Type: Integer

The length of the DES_key_block. The current length of this field may be 64 or
128 bytes. If rule array keyword PINBLOCK is specified, the length must be 128
bytes.

DES_key_block

Direction: Input/Output Type: String

The DES_key_block contains either one or two DES internal key tokens. If only
one token is specified on input, it contains either a null DES token (or binary

SET Block Decompose (CSNDSBD)

256 z/OS V1R3.0 ICSF Application Programmer’s Guide

zeroes) or (if DES-ONLY is specified) the DES key information returned from a
previous SET Block Decompose service invocation. This is the 64-byte DES
internal key token formed with the DES key which was retrieved from the
RSA-OAEP block and enciphered under the host master key. Your application
must not change this DES key information. If two tokens are specified in the
DES_key_block, the first 64 bytes contain the DES token described above. The
second 64 bytes, used when PINBLOCK is specified in the rule array, contain a
DES internal token of the IPINENC or OPINENC key which is used to encrypt
the PIN block returned to the caller in the XData_string parameter.

block_contents_identifier

Direction: Output Type: String

A one-byte string, containing the binary value from the block contents (BC) field
of the SET data block (DB). It indicates what data is carried in the actual data
block (ADB) and the format of any extra data (XData_string). This parameter is
ignored if DES-ONLY is specified in the rule-array.

XData_string_length

Direction: Input/Output Type: Integer

The length of a string where the data contained within XData_string will be
returned. The string must be at least 94 bytes in length. The value will be
updated upon exit with the actual length of the returned XData_string. This
parameter is ignored if DES-ONLY is specified in the rule-array.

XData_string

Direction: Output Type: String

Extra-encrypted data contained within the OAEP-processed and RSA-encrypted
block. The format is indicated by block_contents_identifier. The string is treated
by ICSF as a string of hexadecimal digits. The service will always return the
data from the beginning of the XDataString to the end of the SET DB block, a
maximum of 94 bytes of data. The caller must examine the value returned in
block_contents_identifier to determine the actual length of the XDataString. This
parameter is ignored if DES-ONLY is specified in the rule-array.

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

data_block

Direction: Output Type: String

The data that was decrypted (passed in as DES_encrypted_data_block). Any
padding characters are removed.

SET Block Decompose (CSNDSBD)

Chapter 7. Financial Services 257

hash_block_length

Direction: Input/Output Type: Integer

The length in bytes of the SHA-1 hash returned in hash_block. On input, this
parameter must be set to the length of the hash_block field. The length must be
at least 20 bytes. On output, this field is updated to reflect the length of the
SHA-1 hash returned in the hash_block field (exactly 20 bytes). This parameter
is ignored if DES-ONLY is specified in the rule_array parameter.

hash_block

Direction: Output Type: String

The SHA-1 hash extracted from the RSA-OAEP block. This parameter is
ignored if DES-ONLY is specified in the rule_array parameter.

Restrictions
v Caller must be task mode and must not be SRB mode.

v Not all CCA implementations support a key label as input in the
RSA_private_key_identifier parameter. Some implementations may only support
a key token.

v The RSA private key used by this service must have been generated as a
signature-only key.

v The data_block and the DES_encrypted_data_block cannot overlap.

v The ANSI system keys must be installed in the CKDS to use the SET block
decompose service on a CDMF-only system.

Usage Notes
v RACF is invoked to check authorization to use the SET Block Decompose

service.

v When the SET Block Decompose service is invoked without the DES-ONLY
keyword, the DES key is retrieved from the RSA-OAEP block and returned in the
key token contained in the DES_key_block. On subsequent calls to the SET
Block Decompose service, a caller can re-use the DES key. The caller of the
service must supply the DES_key_block, the DES_key_block_length, the
DES_encrypted_data_block, the DES_encrypted_data_block_length, the
initialization and chaining vectors, and the rule_array keywords SET1.00 and
DES-ONLY. The RSA private key information, RSA-OAEP block and length,
XData string and length, and hash block and length need not be supplied
(although the parameters must still be specified). For this invocation, the
decryption of the RSA-OAEP block is bypassed; only DES decryption is
performed, using the supplied DES key.

v When the SET Block Decompose service is invoked with the PINBLOCK
keyword, DES-ONLY may not also be specified. If both of these rule array
keywords are specified, the service will fail with a Return code 8, Reason code
2016 (invalid rule array content). If PINBLOCK is specified and the
DES_key_block_length field is not 128, the service will fail with Return code 8,
Reason code 2790 (rule array keyword parameter mismatch).

VISA CVV Service Generate (CSNBCSG)
Use the VISA CVV Service Generate callable service to generate a VISA Card
Verification Value (CVV) or MasterCard Card Verification Code (CVC) as defined for

SET Block Decompose (CSNDSBD)

258 z/OS V1R3.0 ICSF Application Programmer’s Guide

track 2. This service generates a CVV that is based upon the information that the
PAN_data, the expiration_date, and the service_code parameters provide. The
service uses the Key-A and the Key-B keys to cryptographically process this
information. A key type of DATA is required for Key-A and Key-B. If the input values
for Key-A and Key-B are not both single-length data keys, they will be routed to the
PCI Cryptographic Coprocessor for processing. The PCI Cryptographic Coprocessor
will allow Key-A and Key-B to be single-length MAC keys. If the requested CVV is
shorter than 5 characters, the CVV is padded on the right by space characters. The
CVV is returned in the 5-byte variable that the CVV_value parameter identifies.
When you verify a CVV, compare the result to the value that the CVV_value
supplies.

Format

CALL CSNBCSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Section
Appendix A, “ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Section Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

VISA CVV Service Generate (CSNBCSG)

Chapter 7. Financial Services 259

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 71. CVV Generate Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes.
PAN-13 is the default value.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

CVV length (optional)

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes,
followed by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes,
followed by 2 blanks.

CVV-4 Specifies that the CVV is to be computed as 4 bytes,
followed by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction: Input Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards. If the PAN-13 keyword is specified in the
rule array, 13 characters are processed; if the PAN-16 keyword is specified in
the rule array, 16 characters are processed.

Even if you specify the PAN-13 keyword, the server might copy 16 bytes to a
work area. Therefore ensure that the verb can address 16 bytes of storage.

expiration_date

Direction: Input Type: String

VISA CVV Service Generate (CSNBCSG)

260 z/OS V1R3.0 ICSF Application Programmer’s Guide

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input Type: String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of ’000’ is supported.

CVV_key_A_Identifier

Direction: Input/Output Type: String

The CVV_key_A_Identifier parameter specifies an address that contains a
64-byte internal key token or a key label of an internal key token record in key
storage. The internal key token contains the key-A key that encrypts information
in the CVV process.

CVV_key_B_Identifier

Direction: Input/Output Type: String

The CVV_key_B_Identifier parameter specifies an address that contains a
64-byte internal key token or a key label of an internal key token record in key
storage. The internal key token contains the key-B key that decrypts information
in the CVV process.

CVV_value

Direction: Output Type: String

The CVV_value parameter specifies an address that points to the place in
application data storage that will be used to store the computed 5-byte
character output value.

Restriction
The CVV Generate verb is not supported on CDMF-only configurations.

VISA CVV Service Verify (CSNBCSV)
Use the VISA CVV service verify callable service to verify a VISA Card Verification
Value (CVV) or MasterCard Card Verification Code (CVC) as defined for track 2.
This service generates a CVV that is based upon the information that the
PAN_data, the expiration_date, and the service_code parameters provide. The
service uses the Key-A and the Key-B keys to cryptographically process this
information. If the input values for Key-A and Key-B are not both single-length data
keys, they will be routed to the PCI Cryptographic Coprocessor for processing. The
PCI Cryptographic Coprocessor will allow Key-A and Key-B to be single-length MAC
or MACVER keys. If the requested CVV is shorter than 5 characters, the CVV is
padded on the right by space characters. The generated CVV is then compared to
the value that the CVV_value supplies for verification.

VISA CVV Service Generate (CSNBCSG)

Chapter 7. Financial Services 261

Format

CALL CSNBCSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

VISA CVV Service Verify (CSNBCSV)

262 z/OS V1R3.0 ICSF Application Programmer’s Guide

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 72. CVV Verify Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes.
PAN-13 is the default value.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

CVV length (optional)

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes,
followed by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes,
followed by 2 blanks.

CVV-4 Specifies that the CVV is to be computed as 4 bytes,
followed by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction: Input Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards. If the PAN-13 keyword is specified in the
rule array, 13 characters are processed; if the PAN-16 keyword is specified in
the rule array, 16 characters are processed.

Even if you specify the PAN-13 keyword, the server might copy 16 bytes to a
work area. Therefore ensure that the verb can address 16 bytes of storage.

expiration_date

Direction: Input Type: String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input Type: String

VISA CVV Service Verify (CSNBCSV)

Chapter 7. Financial Services 263

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of ’000’ is supported.

CVV_key_A_Identifier

Direction: Input/Output Type: String

The CVV_key_A_Identifier parameter specifies an address that contains a
64-byte internal key token or a key label of an internal key token record in key
storage. The internal key token contains the key-A key that encrypts information
in the CVV process.

CVV_key_B_Identifier

Direction: Input/Output Type: String

The CVV_key_B_Identifier parameter specifies an address that contains a
64-byte internal key token or a key label of an internal key token record in key
storage. The internal key token contains the key-B key that decrypts information
in the CVV process.

CVV_value

Direction: Input Type: String

The CVV_value parameter specifies an address that contains the CVV value
which will be compared to the computed CVV value.

Restrictions
The CVV Verify verb is not supported on CDMF-only configurations.

VISA CVV Service Verify (CSNBCSV)

264 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 8. Using Digital Signatures

This chapter describes the PKA callable services that support using digital
signatures to authenticate messages.
v “Digital Signature Generate (CSNDDSG)”
v “Digital Signature Verify (CSNDDSV)” on page 269

Digital Signature Generate (CSNDDSG)
Use the digital signature generate callable service to generate a digital signature
using a PKA private key. The digital signature generate callable service may use
either the RSA or DSS private key, depending on the algorithm you are using. The
RSA private key must be valid for signature usage. This service supports the
following methods:

v ANSI X9.30 (DSS)

v ANSI X9.31 (RSA)

v ISO 9796-1 (RSA)

v RSA DSI PKCS 1.0 and 1.1 (RSA)

v Padding on the left with zeros (RSA)

Note: The maximum signature length is 256 bytes (2048 bits).

The input text should have been previously hashed using either the one-way hash
generate callable service or the MDC generation callable service. If the signature
formatting algorithm specifies ANSI X9.31, you must specify the hash algorithm
used to hash the text (SHA-1 or RPMD-160).

If the PKA_private_key_identifier specifies an RSA private key, you select the
method of formatting the text through the rule_array parameter. If the
PKA_private_key_identifier specifies a DSS private key, the DSS signature
generated is according to ANSI X9.30. For DSS, the signature is generated on a
20-byte hash created from SHA-1 algorithm.

The digital signature generate callable service examines the RSA key specified in
the PKA_private_key_identifier to determine how to route the request. If the
modulus bit length is less than 512 bits, or if the key is a modulus-exponent form
private key with a private section ID of X'02', ICSF routes the request to the
Cryptographic Coprocessor Feature. If the key is a X'08' form CRT private key, or a
retained private key, the service routes the request to a PCI Cryptographic
Coprocessor. In the case of a retained key, the service routes the request to the
specific PCI Cryptographic Coprocessor in which the key is retained. If the key is a
modulus-exponent form private key with a private section ID of X'06', the service
routes the request as follows:

v If the key use bits indicate signature use only, the digital signature generate
service routes the request to either a Cryptographic Coprocessor Feature or a
PCI Cryptographic Coprocessor depending upon availability. If there is no PCI
Cryptographic Coprocessor online, the request is routed to a Cryptographic
Coprocessor Feature.

v If the key use bits indicate key-management use is allowed and the KMMK is
equal to the SMK on the Cryptographic Coprocessor Feature, the digital
signature generate service routes the request to either a Cryptographic
Coprocessor Feature or a PCI Cryptographic Coprocessor depending upon

© Copyright IBM Corp. 1997, 2002 265

availability. If there is no PCI Cryptographic Coprocessor online, the request is
routed to a Cryptographic Coprocessor Feature.

v If the key use bits indicate key-management use is allowed and the KMMK is not
equal to the SMK on the Cryptographic Coprocessor Feature, the request must
be processed on a PCI Cryptographic Coprocessor. If there is no PCI
Cryptographic Coprocessor online, the request will fail and issue a return and
reason code.

Note: For PKCS the message digest and the message-digest algorithm identifier
are combined into an ASN.1 value of type DigestInfo, which is BER-encoded
to give an octet string D (see Table 73). D is the text string supplied in the
hash variable.

Format

CALL CSNDDSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_private_key_identifier_length,
PKA_private_key_identifier,
hash_length,
hash,
signature_field_length,
signature_bit_length,
signature_field)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

Digital Signature Generate (CSNDDSG)

266 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value may be 0 1, or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. A keyword
specifies the method for calculating the RSA digital signature. Table 73 lists the
keywords. Each keyword is left-justified in an 8-byte field and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 73. Keywords for Digital Signature Generate Control Information.. Valid only for
RSA key types.

Keyword Meaning

Digital Signature Formatting Method (optional)

ISO-9796 Calculate the digital signature on the hash according to
ISO-9796-1. Any hash method is allowed. This is the
default.

PKCS-1.0 Calculate the digital signature on the BER-encoded
ASN.1 value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 00. The text
must have been hashed and BER-encoded before input
to this service.

PKCS-1.1 Calculate the digital signature on the BER-encoded
ASN.1 value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 01. The text
must have been hashed and BER-encoded before input
to this service.

ZERO-PAD Format the hash by padding it on the left with binary
zeros to the length of the RSA key modulus. Any
supported hash function is allowed.

X9.31 Format according to the ANSI X9.31 standard. The
input text must have been previously hashed with one
of the hash algorithms specified below.

Hash Method Specification: Required with X9.31

RPMD-160 Hash the input text using the RIPEMD-160 hash
method.

SHA-1 Hash the input text using the SHA-1 hash method.

Digital Signature Generate (CSNDDSG)

Chapter 8. Using Digital Signatures 267

PKA_private_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_private_key_identifier field. The maximum size is 2500
bytes.

PKA_private_key_identifier

Direction: Input Type: String

An internal token or label of the PKA private key or Retained key. If the
signature format is X9.31, the modulus of the RSA key must have a length of at
least 1024 bits.

hash_length

Direction: Input Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text to sign. The maximum size is 256 bytes. Beginning with OS/390 V2 R9
ICSF, if you specify ZERO-PAD in the rule_array parameter, the input hash
length is limited to 32 bytes (256 bits). APAR OW48511 (for OS/390 V2 R9 and
OS/390 V2 R10) changes the hash length limit to 256 bytes when ZERO-PAD
is specified for signature use only keys. It also increases the hash length limit
for all other keys when ZERO-PAD is specified to 36 bytes.

hash

Direction: Input Type: String

The application-supplied text on which to generate the signature. The input text
must have been previously hashed, and for PKCS formatting, it must be
BER-encoded as previously described. For X9.31, the hash algorithms must
have been either SHA-1 or RIPEMD-160. See the rule_array parameter for
more information.

signature_field_length

Direction: Input/Output Type: Integer

The length in bytes of the signature_field to contain the generated digital
signature.

Note: For RSA, this must be at least the RSA modulus size (rounded up to a
multiple of 32 bytes for the X9.31 signature format, or one byte for all
other signature formats). For DSS, this must be at least 40 bytes. For
RSA and DSS, this field is updated with the minimum byte length of the
digital signature. The maximum size is 256 bytes.

signature_bit_length

Direction: Output Type: Integer

Digital Signature Generate (CSNDDSG)

268 z/OS V1R3.0 ICSF Application Programmer’s Guide

The bit length of the digital signature generated. For ISO-9796 this is 1 less
than the modulus length. For other RSA processing methods, this is the
modulus length. For DSS, this is 320.

signature_field

Direction: Output Type: String

The digital signature generated is returned in this field. The digital signature is
in the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the digital signature. This string is left-justified
within the signature_field. Any unused bytes to the right are undefined.

Restrictions
Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

The caller must be in task mode and not in SRB mode.

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

Beginning with OS/390 V2 R9 ICSF, if you specify ZERO-PAD in the rule_array
parameter, the input hash length is limited to 32 bytes (256 bits). APAR OW48511
(for OS/390 V2 R9 and OS/390 V2 R10) changes the hash length limit to 256 bytes
when ZERO-PAD is specified for signature use only keys. It also increases the hash
length limit for all other keys when ZERO-PAD is specified to 36 bytes.

Digital Signature Verify (CSNDDSV)
Use the digital signature verify callable service to verify a digital signature using a
PKA public key. The digital signature verify callable service can use the RSA or
DSS public key, depending on the digital signature algorithm used to generate the
signature. This service supports the following methods:

v ANSI X9.30 (DSS)

v ANSI X9.31 (RSA)

v ISO 9796-1 (RSA)

v RSA DSI PKCS 1.0 and 1.1 (RSA)

v Padding on the left with zeros (RSA)

Input text should have been previously hashed. You can use either the one-way
hash generate callable service or the MDC generation callable service.

This service routes requests to the Cryptographic Coprocessor Feature.

Note: The maximum signature length is 256 bytes (2048 bits).

Digital Signature Generate (CSNDDSG)

Chapter 8. Using Digital Signatures 269

Format

CALL CSNDDSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_public_key_identifier_length,
PKA_public_key_identifier,
hash_length,
hash,
signature_field_length,
signature_field)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0 or 1.

Digital Signature Verify (CSNDDSV)

270 z/OS V1R3.0 ICSF Application Programmer’s Guide

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. A keyword
specifies the method to use to verify the RSA digital signature. Table 74 lists the
keywords. Each keyword is left-justified in an 8-byte field and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 74. Keywords for Digital Signature Verify Control Information. Valid Only for RSA Key
Types.

Keyword Meaning

ISO-9796-1 Verify the digital signature on the hash according to
ISO-9796-1. Any hash method is allowed. This is the
default.

PKCS-1.0 Verify the digital signature on the BER-encoded ASN.1
value of the type DigestInfo as specified in the RSA Data
Security, Inc. Public Key Cryptography Standards #1
block type 00. The text must specify BER encoded hash
text.

PKCS-1.1 Verify the digital signature on the BER-encoded ASN.1
value of the type DigestInfo as specified in the RSA Data
Security, Inc. Public Key Cryptography Standards #1
block type 01. The text must specify BER encoded hash
text.

ZERO-PAD Format the hash by padding it on the left with binary
zeros to the length of the PKA key modulus. Any
supported hash function is allowed.

X9.31 Format according to ANSI X9.31 standard.

PKA_public_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_public_key_identifier field containing the public key token
or label. The maximum size is 2500 bytes.

PKA_public_key_identifier

Direction: Input Type: String

A token or label of the PKA public key.

hash_length

Direction: Input Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text that was signed. The maximum size is 256 bytes.

hash

Direction: Input Type: String

Digital Signature Verify (CSNDDSV)

Chapter 8. Using Digital Signatures 271

The application-supplied text on which the supplied signature was generated.
The text must have been previously hashed and, for PKCS formatting,
BER-encoded as previously described.

signature_field_length

Direction: Input Type: Integer

The length in bytes of the signature_field parameter. The maximum size is 256
bytes.

signature_field

Direction: Input Type: String

This field contains the digital signature to verify. The digital signature is in the
low-order bits (right-justified) of a string whose length is the minimum number of
bytes that can contain the digital signature. This string is left-justified within the
signature_field.

Restrictions
The ability to recover a message from a signature (which ISO-9796 allows but does
not require) is not supported.

The exponent of the RSA public key must be odd.

Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

The caller must be in task mode and not in SRB mode.

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

Usage Note
For DSS if r=0 or s=0 then verification always fails. The DSS digital signature is of
the form r || s, each 20 bytes.

Digital Signature Verify (CSNDDSV)

272 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 9. Managing PKA Cryptographic Keys

This chapter describes the callable services that generate and manage PKA keys.
v “PKA Key Generate (CSNDPKG)”
v “PKA Key Import (CSNDPKI)” on page 277
v “PKA Key Token Build (CSNDPKB)” on page 279
v “PKA Key Token Change (CSNDKTC)” on page 289
v “PKA Public Key Extract (CSNDPKX)” on page 291
v “PKDS Record Create (CSNDKRC)” on page 293
v “PKDS Record Delete (CSNDKRD)” on page 294
v “PKDS Record Read (CSNDKRR)” on page 296
v “PKDS Record Write (CSNDKRW)” on page 297
v “Retained Key Delete (CSNDRKD)” on page 299
v “Retained Key List (CSNDRKL)” on page 301

PKA Key Generate (CSNDPKG)
Use the PKA key generate callable service to generate the following PKA keys:

v PKA internal tokens for use with the DSS algorithm in the digital signature
services

v RSA keys for use on the Cryptographic Coprocessor Feature or PCI
Cryptographic Coprocessor

Input to the PKA key generate callable service is either a skeleton key token that
has been built by the PKA key token build service or a valid internal token. In the
case of a valid internal token, PKG will generate a key with the same modulus
length and the same exponent. The service examines the skeleton token and routes
the generation request to the appropriate cryptographic processor. If the skeleton is
a DSS key token, processing takes place on the Cryptographic Coprocessor
Feature. If the skeleton is an RSA key token, processing takes place on the PCI
Cryptographic Coprocessor.

DSS key generation requires the following information in the input skeleton token:
v Size of modulus p in bits
v Prime modulus p
v Prime divisor q
v Public generator g
v Optionally, the private key name

DSS standards define restrictions on p, q, and g. (Refer to the Federal Information
Processing Standard (FIPS) Publication 186 for DSS standards.) This callable
service does not verify all of these restrictions. If you do not follow these
restrictions, the keys you generate may not be valid DSS keys. The PKA Key Token
Build service or an existing internal or external PKA DSS token can generate the
input skeleton token, but all of the preceding must be provided. You can extract the
DSS public key token from the internal private key token by calling the PKA public
key extract callable service.

RSA key generation requires the following information in the input skeleton token:
v Size of the modulus in bits. The modulus for modulus-exponent form keys is

between 512 and 1024. The CRT modulus is between 512 and 2048.

RSA key generation has the following restrictions: For modulus-exponent, there are
restrictions on modulus, public exponent, and private exponent. For CRT, there are
restrictions on dp, dq, U, and public exponent. See the Key value structure in “PKA
Key Token Build (CSNDPKB)” on page 279 for a summary of restrictions.

© Copyright IBM Corp. 1997, 2002 273

Note: The Transaction Security System PKA96 PKA key generate verb supports
RSA key generation only; it does not support DSS key generation.

Format

CALL CSNDPKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
regeneration_data_length,
regeneration_data,
skeleton_key_identifier_length,
skeleton_key_identifier,
transport_key_identifier,
generated_key_token_length,
generated_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

PKA Key Generate (CSNDPKG)

274 z/OS V1R3.0 ICSF Application Programmer’s Guide

The number of keywords you supplied in the rule_array parameter. Value may
be 1 or 2.

rule_array

Direction: Input Type: String

A keyword that provides control information to the callable service. See Table 75
for a list. A keyword is left-justified in an 8-byte field and padded on the right
with blanks.

Table 75. Keyword for PKA Key Generate Rule Array

Keyword Meaning

Private Key Encryption (required)

CLEAR Return the private key in clear text. The private key in
clear text is an external token. Only valid for RSA keys.

MASTER Encipher the private key under the master key.

RETAIN Retain the private key within the PCI Cryptographic
Coprocessor for additional security. Only valid for RSA
keys.

XPORT Encipher the private key under the
transport_key_identifier. Only valid for RSA keys.

Options (optional)

CLONE Mark a generated and retained private key as usable in
cryptographic engine cloning process. This keyword is
supported only if RETAIN is also specified. Only valid
for RSA keys.

regeneration_data_length

Direction: Input Type: Integer

The value must be 0 for DSS tokens. For RSA tokens, the
regeneration_data_length can be non-zero. If it is non-zero, it must be between
8 and 256 bytes inclusive.

regeneration_data

Direction: Input Type: String

This field points to a string variable containing a string used as the basis for
creating a particular public-private key pair in a repeatable manner.

skeleton_key_identifier_length

Direction: Input Type: Integer

The length of the skeleton_key_identifier parameter in bytes. The maximum
allowed value is 2500 bytes.

skeleton_key_identifier

Direction: Input Type: String

PKA Key Generate (CSNDPKG)

Chapter 9. Managing PKA Cryptographic Keys 275

The application-supplied skeleton key token generated by PKA key token build
or label of the token that contains the required network quantities for DSS key
generation, or the required modulus length and public exponent for RSA key
generation.

transport_key_identifier

Direction: Input Type: String

A 64-byte field to contain a DES key identifier. This field must be binary zeros,
unless the XPORT rule is specified. For XPORT rule, this is an IMPORTER or
EXPORTER key or the label of an IMPORTER or EXPORTER key that is used
to encrypt the generated key. If you specify a label, it must resolve uniquely to
either an IMPORTER or EXPORTER key. Only valid for RSA keys.

generated_key_token_length

Direction: Input/Output Type: Integer

The length of the generated key token. The field is checked to ensure it is at
least equal to the token being returned. The maximum size is 2500 bytes. On
output, this field is updated with the actual token length.

generated_key_token

Direction: Input/Output Type: String

The internal token or label of the generated DSS or RSA key. The label can be
that of a retained key. Checks are made to ensure that a retained key is not
overlayed in PKDS. If the label is that of a retained key, the private name in the
token must match the label name. If a label is specified in the
generated_key_token field, the generated_key_token_length returned to the
application will be the same as the input length. If RETAIN was specified, but
the generated_key_token was not specified as a label, the generated key length
returned to the application will be zero (the key was retained in the PCI
Cryptographic Coprocessor). If the record already exists in the PKDS with the
same label as the one specified as the generated_key_token, the record will be
overwritten with the newly generated key token (unless the PKDS record is an
existing retained private key, in which case it cannot be overwritten). If there is
no existing PKDS record with this label in the case of generating a retained key,
a record will be created. For generation of a non-retained key, if a label is
specified in the generated_key_token field, a record must already exist in the
PKDS with this same label or the service will fail.

Restriction
The caller must be in task mode and not in SRB mode.

Usage Note
When a Retained key is created, ICSF records this event in a type 82 SMF record
with a subtype of 15.

SAF will be invoked to check authorization to use any key labels specified as input.

Beginning with OS/390 V2 R9 ICSF, CSFDPKG now supports writing the
generated_key directly to the PKDS. This means that the generated_key_token field

PKA Key Generate (CSNDPKG)

276 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|

is now an INPUT as well as an OUTPUT field. If a PKDS label name is not being
supplied, than a value less than a blank X'40' must be supplied in the first byte of
the parameter or else the service fails with a return code 8, reason code 11000.

PKA Key Import (CSNDPKI)
This service imports an external PKA private key token. (This consists of a PKA
private key and public key.) The secret values of the key may be clear or encrypted
under a limited-authority DES importer key.

This service can also import a clear PKA key. The PKA key token build service
creates a clear PKA key token.

Output of this service is an ICSF internal token of the RSA or DSS private key.

ICSF examines the key token supplied in the source_key_identifier to determine
where to route the request. If the source_key_identifier contains an RSA private key
with a modulus length of at least 512 bits, ICSF routes the PKA key import request
to a PCI Cryptographic Coprocessor. If no PCI Cryptographic Coprocessor is online,
or if the source_key_identifier contains either an RSA private key with a modulus
length less than 512 bits or a DSS private key, ICSF routes the PKA key import
request to the Cryptographic Coprocessor Feature. An RSA modulus-exponent form
token imported on the PCI Cryptographic Coprocessor results in an X'06' format,
while a token imported on a Cryptographic Coprocessor Feature will result in a
X'02' format. If no PCI Cryptographic Coprocessor is online and the
source_key_identifier is an RSA-CRT token, the request fails.

Format

CALL CSNDPKI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
importer_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKA Key Generate (CSNDPKG)

Chapter 9. Managing PKA Cryptographic Keys 277

|
|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This must
be 0.

rule_array

Direction: Input Type: String

Reserved field. This field is not used, but you must specify it.

source_key_identifier_length

Direction: Input Type: Integer

The length of the source_key_identifier parameter. The maximum size is 2500
bytes.

source_key_identifier

Direction: Input Type: String

The external token or label of a PKA private key. This cannot be the label of a
retained private key. This is the output of the PKA key generate (CSNDPKG)
callable service or the PKA key token build (CSNDPKB) callable service. If
encrypted, it was created on another platform.

importer_key_identifier

Direction: Input/Output Type: String

A DES internal token or the label of an IMP-PKA key. This is a limited authority
key-encrypting key. It is ignored for clear tokens.

PKA Key Import (CSNDPKI)

278 z/OS V1R3.0 ICSF Application Programmer’s Guide

target_key_identifier_length

Direction: Input/Output Type: Integer

The length of the target_key_identifier parameter. The maximum size is 2500
bytes.

target_key_identifier

Direction: Input/Output Type: String

This field contains the internal token or label of the imported PKA private key. If
a label is specified on input, a PKDS record with this label must exist. The
PKDS record with this label will be overwritten with imported key unless the
existing record is a retained key. If the record is a retained key, the import will
fail. A retained key record cannot be overwritten. If no label is specified on
input, this field should be set to binary zeroes on input.

Restrictions
This service imports RSA keys of up to 2048 bits. However, the hardware
configuration sets the limits on the modulus size of keys for digital signatures and
key management; thus, the key may be successfully imported but fail when used if
the limits are exceeded.

The importer_key_identifier is a limited-authority key-encrypting key.

The caller must be in task mode and not in SRB mode.

CRT form tokens with a private section ID of X'05' cannot be imported into ICSF.

Usage Notes
This service imports keys of any modulus size up to 2048 bits. However, the
hardware configuration sets the limits on the modulus size of keys for digital
signatures and key management; thus, the key may be successfully imported but
fail when used if the limits are exceeded.

Beginning with OS/390 V2 R9 ICSF, CSFDPKI now supports writing the
target_key_identifier directly to the PKDS. This means that the target_key_identifier
field is now an INPUT as well as an OUTPUT field.

If a PKDS label name is not being supplied, then a value less than a blank (X'40')
must be supplied in the first byte of the parameter or else the service fails with
return code 8, reason code 11000.

PKA Key Token Build (CSNDPKB)
Use this utility to build external PKA key tokens containing unenciphered private
RSA or DSS keys. You can use this token as input to the PKA key import service to
obtain an operational internal token containing an enciphered private key. This
service builds a skeleton token you can use as input to the PKA key generate
callable service (see Table 75 on page 275). You can also input to this service a
clear unenciphered public RSA or DSS key and return the public key in a token
format that other ICSF PKA services can use directly.

PKA Key Import (CSNDPKI)

Chapter 9. Managing PKA Cryptographic Keys 279

|
|
|

You can also use this service to build a key token for an RSA private key in
optimized Chinese Remainder Theorem (CRT) form.

DSS key generation requires the following information in the input skeleton token:
v Size of modulus p in bits
v Prime modulus p
v Prime divisor q
v Public generator g
v Optionally, the private key name

Note: DSS standards define restrictions on the prime modulus p, prime divisor q,
and public generator g. (Refer to the Federal Information Processing
Standard (FIPS) Publication 186 for DSS standards.) This callable service
does not verify all of these restrictions. If you do not follow the restrictions,
the keys you generate may not be valid DSS keys.

Format

CALL CSNDPKB(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_value_structure_length,
key_value_structure,
private_key_name_length,
private_key_name,
reserved_1_length,
reserved_1,
reserved_2_length,
reserved_2,
reserved_3_length,
reserved_3,
reserved_4_length,
reserved_4,
reserved_5_length,
reserved_5,
key_token_length,
key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned

PKA Key Token Build (CSNDPKB)

280 z/OS V1R3.0 ICSF Application Programmer’s Guide

to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Input/Output Type: String

Reserved field.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Value must
be 1 or 2.

rule_array

Direction: Input Type: String

One or two keywords that provide control information to the callable service.
Table 76 lists the keywords. The keywords must be in 8 to 16 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks.

Table 76. Keywords for PKA Key Token Build Control Information

Keyword Meaning

Key Type (required)

DSS-PRIV This keyword indicates building a key token
containing both public and private DSS key
information. The parameter key_value_structure
identifies the input key values, if supplied.

DSS-PUBL This keyword indicates building a key token
containing public DSS key information. The
parameter key_value_structure identifies the input
key values, if supplied.

RSA-CRT This keyword indicates building a token containing an
RSA private key in the optimized Chinese Remainder
Theorem (CRT) form. The parameter
key_value_structure identifies the input key values, if
supplied.

RSA-PRIV This keyword indicates building a token containing
both public and private RSA key information. The
parameter key_value_structure identifies the input
key values, if supplied.

RSA-PUBL This keyword indicates building a token containing
public RSA key information. The parameter
key_value_structure identifies the input values, if
supplied.

PKA Key Token Build (CSNDPKB)

Chapter 9. Managing PKA Cryptographic Keys 281

Table 76. Keywords for PKA Key Token Build Control Information (continued)

Keyword Meaning

Key Usage Control (optional)

KEY-MGMT Indicates that an RSA private key can be used in
both the symmetric key import and the digital
signature generate callable services.

KM-ONLY Indicates that an RSA private key can be used only
in symmetric key distribution.

SIG-ONLY Indicates that an RSA private key cannot be used in
symmetric key distribution. This is the default. Note
that for DSS-PRIV the keyword is allowed but
extraneous; DSS keys are defined only for digital
signature.

key_value_structure_length

Direction: Input Type: Integer

This is a segment of contiguous storage containing a variable number of input
clear key values. The length depends on the key type parameter in the rule
array and on the actual values input. The length is in bytes.

Table 77. Key Value Structure Length Maximum Values for Key Types

Key Type Key Value Structure Maximum Value

DSS-PRIV 436

DSS-PUBL 416

RSA-CRT 2500

RSA-PRIV 648

RSA-PUBL 520

key_value_structure

Direction: Input Type: String

This is a segment of contiguous storage containing a variable number of input
clear key values and the lengths of these values in bits or bytes, as specified.
The structure elements are ordered, of variable length, and the input key values
must be right-justified within their respective structure elements and padded on
the left with binary zeros. Table 78 defines the structure and contents as a
function of key type.

Table 78. Key Value Structure Elements for PKA Key Token Build

Offset Length (bytes) Description

Key Value Structure (Optimized RSA, Chinese Remainder Theorem form,
RSA-CRT)

000 002 Modulus length in bits (512 to
2048). This is required.

PKA Key Token Build (CSNDPKB)

282 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 78. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

002 002 Modulus field length in bytes,
“nnn.” This value can be zero if the
key token is used as a
skeleton_key_token in the PKA key
generate callable service. This
value must not exceed 256.

004 002 Public exponent field length in
bytes, “eee.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.

006 002 Reserved, binary zero.

008 002 Length of the prime number, p, in
bytes, “ppp.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.
Maximum size of p + q is 256
bytes.

010 002 Length of the prime number, q, in
bytes, “qqq.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.
Maximum size of p + q is 256
bytes.

012 002 Length of dp, in bytes, “rrr.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of dp + dq is
256 bytes.

014 002 Length of dq, in bytes, “sss.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of dp + dq is
256 bytes.

016 002 Length of U, in bytes, “uuu.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of U is 256
bytes.

018 nnn Modulus, n.

PKA Key Token Build (CSNDPKB)

Chapter 9. Managing PKA Cryptographic Keys 283

Table 78. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

018 + nnn eee Public exponent, e. This is an
integer such that 1<e<n. e must be
odd. When you are building a
skeleton_key_token to control the
generation of an RSA key pair, the
public key exponent can be one of
the following values: 3, 65537 (216

+ 1), or 0 to indicate that a full
random exponent should be
generated. The exponent field can
be a null-length field if the
exponent value is 0.

018 + nnn + eee ppp Prime number, p.

018 + nnn + eee + ppp qqq Prime number, q.

018 + nnn + eee + ppp +
qqq

rrr dp = d mod(p-1).

018 + nnn + eee + ppp +
qqq + rrr

sss dq = d mod(q-1).

018 + nnn + eee + ppp +
qqq + rrr + sss

uuu U = q–1mod(p).

Key Value Structure (RSA Private or RSA Public)

000 002 Modulus length in bits. This is
required. When building a skeleton
token, the modulus length in bits
must be greater than or equal to
512 bits.

002 002 Modulus field length in bytes,
“XXX”. This value can be zero if
you are using the key token as a
skeleton in the PKA key generate
verb. This value must not exceed
256 when the RSA-PUBL keyword
is used, and must not exceed 128
when the RSA-PRIV keyword is
used.

This service can build a key token
for a public RSA key with a
2048-bit modulus length, or it can
build a key token for a 1024-bit
modulus length private key.

PKA Key Token Build (CSNDPKB)

284 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 78. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

004 002 Public exponent field length in
bytes, “YYY”. This value must not
exceed 256 when the RSA-PUBL
keyword is used, and must not
exceed 128 when the RSA-PRIV
keyword is used. This value can be
zero if you are using the key token
as a skeleton token in the PKA key
generate verb. In this case, a
random exponent is generated. To
obtain a fixed, predetermined
public key exponent, you can
supply this field and the public
exponent as input to the PKA key
generate verb.

006 002 Private exponent field length in
bytes, “ZZZ”. This field can be
zero, indicating that private key
information is not provided. This
value must not exceed 128 bytes.
This value can be zero if you are
using the key token as a skeleton
token in the PKA key generate
verb.

008 XXX Modulus, n. This is an integer such
that 1<n<22048. The n is the
product of p and q for primes p and
q.

008 + XXX YYY RSA public exponent e, which is an
odd integer where 1<e<n. You can
supply this value in a skeleton to
generate an RSA private key with a
predetermined public exponent
value.

008 + XXX + YYY ZZZ RSA secret exponent d. This is an
integer such that 1<d<n. The value
of d is e-1 mod(p-1)(q-1); the You
need not specify this value if you
specify RSA-PUBL in the rule
array.

Key Value Structure (DSS Private or DSS Public)

000 002 Modulus length in bits. This is
required.

002 002 Prime modulus field length in
bytes, “XXX”. You can supply this
as a network quantity to the ICSF
PKA key generate callable service,
which uses the quantity to generate
DSS keys. The maximum allowed
value is 128.

PKA Key Token Build (CSNDPKB)

Chapter 9. Managing PKA Cryptographic Keys 285

Table 78. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

004 002 Prime divisor field length in bytes,
“YYY”. You can supply this as a
network quantity to the ICSF PKA
key generate callable service,
which uses the quantity to generate
DSS keys. The allowed values are
0 or 20 bytes.

006 002 Public generator field length in
bytes, “ZZZ”. You can supply this in
a skeleton token as a network
quantity to the ICSF PKA key
generate callable service, which
uses the quantity to generate DSS
keys. The maximum allowed value
is 128 bytes and is exactly the
same length as the prime modulus.

008 002 Public key field length in bytes,
“AAA”. This field can be zero,
indicating that the ICSF PKA key
generate callable service generates
a value at random from supplied or
generated network quantities. The
maximum allowed value is 128
bytes and is exactly the same
length as the prime modulus.

010 002 Secret key field length in bytes,
“BBB”. This field can be zero,
indicating that the ICSF PKA key
generate callable service generates
a value at random from supplied or
generated network quantities. The
allowed values are 0 or 20 bytes.

012 XXX DSS prime modulus p. This is an
integer such that 2L-1<p<2L. The p
must be prime. You can supply this
value in a skeleton token as a
network quantity; it is used in the
algorithm that generates DSS keys.

012 + XXX YYY DSS prime divisor q. This is an
integer that is a prime divisor of p-1
and 2159<q<2160. You can supply
this value in a skeleton token as a
network quantity; it is used in the
algorithm that generates DSS keys.

012 + XXX+ YYY ZZZ DSS public generator g. This is an
integer such that 1<g<p. You can
supply this value in a skeleton
token as a network quantity; it is
used in the algorithm that
generates DSS keys.

012 + XXX+ YYY+ ZZZ AAA DSS public key y. This is an
integer such that y = gx mod p.

PKA Key Token Build (CSNDPKB)

286 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 78. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

012 + XXX+ YYY+ ZZZ+
AAA

BBB DSS secret private key x. This is
an integer such that 0<x<q. The x
is random. You need not supply
this value if you specify DSS-PUBL
in the rule array.

Notes:

1. All length fields are in binary.

2. All binary fields (exponent, lengths, modulus, and so on) are stored with the
high-order byte field first. This integer number is right-justified within the key
structure element field.

3. You must supply all values in the structure to create a token containing an
RSA or DSS private key for input to the PKA key import service.

private_key_name_length

Direction: Input Type: Integer

The length can be 0 or 64.

private_key_name

Direction: Input Type: EBCDIC character

This field contains the name of a private key. The name must conform to ICSF
label syntax rules. That is, allowed characters are alphanumeric, national
(@,#,$) or period (.). The first character must be alphabetic or national. The
name is folded to upper case and converted to ASCII characters. ASCII is the
permanent form of the name because the name should be independent of the
platform. The name is then cryptographically coupled with clear private key data
before encryption of the private key. Because of this coupling, the name can
never change after the key token is imported. The parameter is valid only with
key type RSA-CRT.

reserved_1_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_1

Direction: Input Type: String

The reserved_1 parameter identifies a string that is reserved. The service
ignores it.

reserved_2_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

PKA Key Token Build (CSNDPKB)

Chapter 9. Managing PKA Cryptographic Keys 287

|
|
|
|
|
|
|
|
|

reserved_2

Direction: Input Type: String

The reserved_2 parameter identifies a string that is reserved. The service
ignores it.

reserved_3_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_3

Direction: Input Type: String

The reserved_3 parameter identifies a string that is reserved. The service
ignores it.

reserved_4_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_4

Direction: Input Type: String

The reserved_4 parameter identifies a string that is reserved. The service
ignores it.

reserved_5_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_5

Direction: Input Type: String

The reserved_5 parameter identifies a string that is reserved. The service
ignores it.

key_token_length

Direction: Input/Output Type: Integer

Length of the returned key token. The service checks the field to ensure it is at
least equal to the size of the token to return. On return from this service, this
field is updated with the exact length of the key_token created. On input, a size
of 1024 bytes is sufficient to contain the largest key_token created.

PKA Key Token Build (CSNDPKB)

288 z/OS V1R3.0 ICSF Application Programmer’s Guide

key_token

Direction: Output Type: String

The returned key token containing an unenciphered private or public key. The
private key is in an external form that can be exchanged with different Common
Cryptographic Architecture (CCA) PKA systems. You can use the public key
token directly in appropriate ICSF signature verification or key management
services.

Usage Note
If you are building a skeleton for use in a PKA Key Generate request to generate a
retained PKA private key, you must build a private key name section in the skeleton
token.

PKA Key Token Change (CSNDKTC)
The PKA Key Token Change callable service changes PKA key tokens (RSA and
DSS) from encipherment under the old PCI Cryptographic Coprocessor
Asymmetric-Keys Master Key to encipherment under the current PCI Cryptographic
Coprocessor Asymmetric-Keys Master Key. This service only changes Private
Internal PKA Key Tokens. PKA private keys encrypted under the Key Management
Master Key (KMMK) cannot be reenciphered using this service unless the KMMK
has the same value as the Signature Master Key (SMK).

ICSF routes the PKA Key Token Change request to a PCI Cryptographic
Coprocessor for processing. If no PCI Cryptographic Coprocessor is online, the
request fails.

Format

CALL CSNDKTC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKA Key Token Build (CSNDPKB)

Chapter 9. Managing PKA Cryptographic Keys 289

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1.

rule_array

Direction: Input Type: Character String

The process rule for the callable service. The keyword must be in 8 bytes of
contiguous storage, left-justified and padded on the right with blanks.

Table 79. Rule Array Keywords for PKA Key Token Change (Required)

Keyword Meaning

RTCMK Changes the PKA key from encipherment with the old master
key to encipherment with the current master key.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. The maximum size is 2500 bytes.

key_identifier

Direction: Input/Output Type: String

An internal RSA or DSS private key token.

Usage Note
PKA callable services must be enabled to use the PKA Key Token Change callable
service.

PKA Key Token Change (CSNDKTC)

290 z/OS V1R3.0 ICSF Application Programmer’s Guide

PKA Public Key Extract (CSNDPKX)
Use the PKA public key extract callable service to extract a PKA public key token
from a supplied PKA internal or external private key token. This service performs no
cryptographic verification of the PKA private token. You can verify the private token
by using it in a service such as digital signature generate.

Format

CALL CSNDPKX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_indentifier_length,
source_key_identifier,
target_public_key_token_length,
target_public_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

rule_array_count

Direction: Input Type: Integer

PKA Public Key Extract (CSNDPKX)

Chapter 9. Managing PKA Cryptographic Keys 291

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

rule_array

Direction: Input Type: String

Reserved field. This field is not used, but you must specify it.

source_key_identifier_length

Direction: Input Type: integer

The length of the source_key_identifier parameter. The maximum size is 2500
bytes.

source_key_identifier

Direction: Input/output Type: string

The internal or external token of a PKA private key or the label of a PKA private
key. This can be the input or output from PKA key import or from PKA key
generate.

This service supports the RSA private key token formats supported on the PCI
Cryptographic Coprocessor. If the source_key_identifier specifies a label for a
private key that has been retained within a PCI Cryptographic Coprocessor, this
service extracts only the public key section of the token.

target_public_key_token_length

Direction: Input/Output Type: Integer

The length of the target_public_key_token parameter. The maximum size is
2500 bytes. On output, this field will be updated with the actual byte length of
the target_public_key_token.

target_public_key_token

Direction: Output Type: String

This field contains the token of the extracted PKA public key.

Restriction
The caller must be in task mode and not in SRB mode.

Usage Notes
This service extracts the public key from the internal or external form of a private
key. However, it does not check the cryptographic validity of the private token.

Beginning with OS/390 V2 R9 ICSF, this service must be in task mode, not SRB
mode. It was also enhanced to support PKDS labels as well as tokens. This
requires a change to the stub module CSNDPKX. Existing applications that have
been link edited with the old stub module will still run without change. Access to this
service can also be RACF controlled.

PKA Public Key Extract (CSNDPKX)

292 z/OS V1R3.0 ICSF Application Programmer’s Guide

PKDS Record Create (CSNDKRC)
This callable service writes a new record to the PKDS.

Format

CALL CSNDKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

PKDS Record Create (CSNDKRC)

Chapter 9. Managing PKA Cryptographic Keys 293

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

label

Direction: Input Type: String

The label of the record to be created. A 64 byte character string.

token_length

Direction: Input Type: Integer

The length of the field containing the token to be written to the PKDS. If zero is
specified, a null token will be added to the PKDS. The maximum value of
token_length is the maximum length of a private RSA or DSS token.

token

Direction: Input Type: String

Data to be written to the PKDS if token_length is non-zero. A RSA or DSS
private token in either external or internal format, or a DSS or RSA public token.

Restriction
Caller must be task mode and must not be SRB mode.

Usage Note
PKA callable services must be enabled for you to use this service.

PKDS Record Delete (CSNDKRD)
Use PKDS record delete to delete a record from the PKDS.

Format

CALL CSNDKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label)

Parameters
return_code

Direction: Output Type: Integer

PKDS Record Create (CSNDKRC)

294 z/OS V1R3.0 ICSF Application Programmer’s Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF, except that its value must be 0, or 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 80. Keywords for PKDS Record Delete

Keyword Meaning

Deletion Mode (optional) specifies whether the record is to be deleted entirely or
whether only its contents are to be erased.

LABEL-DL Specifies that the record will be deleted from the PKDS
entirely. This is the default deletion mode.

TOKEN-DL Specifies that the only the contents of the record are to be
deleted. The record will still exist in the PKDS, but will
contain only binary zeroes.

label

Direction: Input Type: String

PKDS Record Delete (CSNDKRD)

Chapter 9. Managing PKA Cryptographic Keys 295

The label of the record to be deleted. A 64 byte character string.

Restrictions
v Caller must be task mode and must not be SRB mode.

v This service cannot delete the PKDS record for a retained key.

Usage Note
PKA callable services must be enabled for you to use this service.

PKDS Record Read (CSNDKRR)
Reads a record from the PKDS and returns the content of the record. This is true
even when the record contains a null PKA token.

Format

CALL CSNDKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

PKDS Record Delete (CSNDKRD)

296 z/OS V1R3.0 ICSF Application Programmer’s Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

label

Direction: Input Type: String

The label of the record to be read. A 64 byte character string.

token_length

Direction: Input/Output Type: Integer

The length of the area to which the record is to be returned. On successful
completion of this service, token_length will contain the actual length of the
record returned.

token

Direction: Output Type: String

Area into which the returned record will be written. The area should be at least
as long as the record.

Restriction
Caller must be task mode and must not be SRB mode.

Usage Note
PKA callable services must be enabled for you to use this service.

PKDS Record Write (CSNDKRW)
Writes over an existing record in the PKDS.

PKDS Record Read (CSNDKRR)

Chapter 9. Managing PKA Cryptographic Keys 297

Format

CALL CSNDKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. Its
value must be 0 or 1.

rule_array

Direction: Input Type: String

PKDS Record Write (CSNDKRW)

298 z/OS V1R3.0 ICSF Application Programmer’s Guide

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 81. Keywords for PKDS Record Write

Keyword Meaning

Write Mode (optional) specifies the circumstances under which the record is to be
written.

CHECK Specifies that the record will be written only if a record of
type NULL with the same label exists in the PKDS. If such
a record exists, ICSF overwrites it. This is the default
condition.

OVERLAY Specifies that the record will be overwritten regardless of
the current content of the record. If a record with the same
label exists in the PKDS, ICSF overwrites it.

label

Direction: Input Type: String

The label of the record to be overwritten. A 64 byte character string.

token_length

Direction: Input Type: Integer

The length of the field containing the token to be written to the PKDS.

token

Direction: Input Type: String

The data to be written to the PKDS, which is a DSS or RSA private token in
either external or internal format, or a DSS or RSA public token.

Restrictions
v Caller must be task mode and must not be SRB mode.

v This service cannot update a PKDS record for a retained key.

Usage Note
PKA callable services must be enabled for you to use this service.

Retained Key Delete (CSNDRKD)
Use the retained key delete callable service to delete a key that has been retained
within the PCI Cryptographic Coprocessor. This service also deletes the record that
contains the associated key token from the PKDS. It also allows the deletion of a
retained key in the PCI Cryptographic Coprocessor even if there isn’t a PKDS
record, or deletion of a PKDS record for a retained key even if the PCI
Cryptographic Coprocessor holding the retained key is not online. Use the
rule_array parameter specifying the FORCE keyword and serial number of the PCI
Cryptographic Coprocessor that contains the retained key to be deleted. If a PKDS
record exists for the same label, but the serial number doesn’t match the serial

PKDS Record Write (CSNDKRW)

Chapter 9. Managing PKA Cryptographic Keys 299

number in rule_array, the service will fail. If any applications still need the public
key, use public key extract to create a public key token before deletion of the
retained key.

Format

CALL CSNDRKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. The value may
be 0 or 2.

rule_array

Direction: Input Type: Character String

This parameter may be FORCE and the PCI Cryptographic Coprocessor serial
number.

Retained Key Delete (CSNDRKD)

300 z/OS V1R3.0 ICSF Application Programmer’s Guide

key_label

Direction: Input Type: String

A 64-byte label of a key that has been retained in a PCI Cryptographic
Coprocessor.

Restriction
Caller must be task mode and must not be SRB mode.

Usage Notes
v ICSF calls the Security Server (RACF) to check authorization to use the Retained

Key Delete service and the label of the key specified in key_label.

v Retained private keys are domain-specific. Only the LPAR domain that created a
Retained private key can delete the key via the Retained Key Delete service.

v When a Retained key is deleted using the Retained Key Delete service, ICSF
records this event in a type 82 SMF record with a subtype of 15.

v If the Retained key does not exist in the PCI Cryptographic Coprocessor and the
PKDS record exists and the domain that created the retained key matches the
domain of the requestor, ICSF deletes the PKDS record. This situation may occur
if the PCI Cryptographic Coprocessor has been zeroized through TKE or the
service processor.

v If a PKDS record containing the retained key exists but the PCI Cryptographic
Coprocessor holding the retained key is not online, ICSF deletes the PKDS
record if the FORCE keyword is specified.

v If the retained key exists on the specified PCI Cryptographic Coprocessor but
there is no corresponding PKDS record, ICSF deletes the retained key from the
PCI Cryptographic Coprocessor if the FORCE keyword is specified.

Retained Key List (CSNDRKL)
Use the retained key list callable service to list the key labels of those keys that
have been retained within all currently active PCI Cryptographic Coprocessors.

Format

CALL CSNDRKL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label_mask
retained_keys_count
key_labels_count
key_labels)

Parameters
return_code

Direction: Output Type: Integer

Retained Key Delete (CSNDRKD)

Chapter 9. Managing PKA Cryptographic Keys 301

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. The value must
be 0.

rule_array

Direction: Input Type: Character String

This parameter is ignored by ICSF.

key_label_mask

Direction: Input Type: String

A 64-byte key label mask that is used to filter the list of key names returned by
the verb. You can use a wild card (*) to identify multiple keys retained within the
PCI Cryptographic Coprocessor.

Note: If an asterisk (*) is used, it must be the last character in key_label_mask.
There can only be one *.

retained_keys_count

Direction: Output Type: Integer

Retained Key List (CSNDRKL)

302 z/OS V1R3.0 ICSF Application Programmer’s Guide

An integer variable to receive the number of retained keys stored within all
active PCI Cryptographic Coprocessors.

key_labels_count

Direction: Input/Output Type: Integer

On input this variable defines the maximum number of key labels to be
returned. On output this variable defines the total number of key labels
returned. The value returned in the retained_keys_count variable can be larger
if you have not provided for the return of a sufficiently large number of key
labels in the key_labels_count field.

key_labels

Direction: Output Type: String

A string variable where the key label information will be returned. This field must
be at least 64 times the key label count value. The key label information is a
string of zero or more 64-byte entries. The first 64-byte entry contains a PCI
Cryptographic Coprocessor card serial number, and is followed by one or more
64-byte entries that each contain a key label of a key retained within that PCI
Cryptographic Coprocessor. The format of the first 64-byte entry is as follows:
/nnnnnnnnbbbbb...bbb
where
"/" is the character "/" (EBCDIC: X’61’)
"nnnnnnnn" is the 8-byte PCI Cryptographic Coprocessor card

serial number
"bbbbb...bbb" is 55 bytes of blank pad characters

(EBCDIC: X’40’)

This information (64-byte card serial number entry followed by one or more
64-byte label entries) is repeated for each active PCI Cryptographic
Coprocessor that contains retained keys that match the key_label_mask. All
data returned is EBCDIC characters. The number of bytes of information
returned is governed by the value specified in the key_labels_count field. The
key_labels field must be large enough to hold the number of 64-byte labels
specified in the key_labels_count field plus one 64-byte entry for each active
PCI Cryptographic Coprocessor (a maximum of 64 PCI Cryptographic
Coprocessors).

Restriction
Caller must be task mode and must not be SRB mode.

Usage Notes
v Not all CCA platforms may support multiple PCI Cryptographic Coprocessor

cards. In the case where only one card is supported, the key_labels field will
contain one or more 64-byte entries that each contain a key label of a key
retained within the PCI Cryptographic Coprocessor. There will be no 64-byte
entry or entries containing a PCI Cryptographic Coprocessor card serial number.

v ICSF calls RACF to check authorization to use the Retained Key List service.

v ICSF caller must be authorized to the key_label_mask name including the *.

v Retained private keys are domain-specific. ICSF lists only those keys that were
created by the LPAR domain that issues the Retained Key List request.

Retained Key List (CSNDRKL)

Chapter 9. Managing PKA Cryptographic Keys 303

Retained Key List (CSNDRKL)

304 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 10. Utilities

This chapter presents utilities to perform the following tasks:
v Build DES key tokens
v Encipher plaintext using the Cipher Block Chaining (CBC) method
v Convert a binary string to a character string or a character string to a binary

string
v Edit an ASCII string according to the editing rules of ANSI X9.9-4

This chapter describes the following callable services:

v “Character/Nibble Conversion (CSNBXBC and CSNBXCB)”

v “Code Conversion (CSNBXEA and CSNBXAE)” on page 307

v “X9.9 Data Editing (CSNB9ED)” on page 308

Character/Nibble Conversion (CSNBXBC and CSNBXCB)
Use these utilities to convert a binary string to a character string (CSNBXBC) or
convert a character string to a binary string (CSNBXCB).

Format

CALL CSNBXBC(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXCB(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

© Copyright IBM Corp. 1997, 2002 305

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

text_length

Direction: Input/Output Type: Integer

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive nonzero value. On output,
text_length is updated with an integer that is the length of the target_text.

source_text

Direction: Input Type: String

This parameter contains the string to convert.

target_text

Direction: Output Type: String

The converted text that the callable service returns.

code_table

Direction: Input Type: String

A 16-byte conversion table. The code table for binary to EBCDIC conversion is
X'F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'.

Usage Notes
These services are structured differently from the other services. They run in the
caller's address space in the caller's key and mode.

ICSF need not be active for you to run either of these services. No pre- or
post-processing exits are enabled for these services, and no calls to RACF are
issued when you run these services.

Character/Nibble Conversion (CSNBXBC and CSNBXCB)

306 z/OS V1R3.0 ICSF Application Programmer’s Guide

Code Conversion (CSNBXEA and CSNBXAE)
Use these utilities to convert ASCII data to EBCDIC data (CSNBXAE) or EBCDIC
data to ASCII data (CSNBXEA).

Format

CALL CSNBXAE(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXEA(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

Code Conversion (CSNBXEA and CSNBXAE)

Chapter 10. Utilities 307

text_length

Direction: Input Type: Integer

The text_length contains an integer that is the length of the source_text. The
length must be a positive nonzero value.

source_text

Direction: Input Type: String

This parameter contains the string to convert.

target_text

Direction: Output Type: String

The converted text that the callable service returns.

code_table

Direction: Input Type: String

A 256-byte conversion table. When value is zero, this service uses the default
code table. See Appendix G, “EBCDIC and ASCII Default Conversion Tables”
on page 445 for contents of the default table.

Note: The Transaction Security System code table has 2 additional 8-byte
fields that are not used in the conversion process. ICSF accepts either a
256-byte or a 272-byte code table, but uses only the first 256 bytes in
the conversion.

Usage Notes
These services are structured differently than the other services. They run in the
caller's address space in the caller's key and mode. ICSF need not be active for
you to run either of these services. No pre- or post-processing exits are enabled for
these services, and no calls to RACF are issued when you run these services.

X9.9 Data Editing (CSNB9ED)
Use this utility to edit an ASCII text string according to the editing rules of ANSI
X9.9-4. It edits the text that the source_text parameter supplies according to the
following rules. The rules are listed here in the order in which they are applied. It
returns the result in the target_text parameter.

1. This service replaces each carriage-return (CR) character and each line-feed
(LF) character with a single-space character.

2. It replaces each lowercase alphabetic character (a through z) with its equivalent
uppercase character (A through Z).

3. It deletes all characters other than the following:
v Alphabetics A...Z
v Numerics 0...9
v Space
v Comma ,
v Period .
v Dash -

Code Conversion (CSNBXEA and CSNBXAE)

308 z/OS V1R3.0 ICSF Application Programmer’s Guide

v Solidus /
v Asterisk *
v Open parenthesis (
v Close parenthesis)

4. It deletes all leading space characters.

5. It replaces all sequences of two or more space characters with a single-space
character.

Format

CALL CSNB9ED(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

Reserved field.

exit_data

Direction: Ignored Type: String

Reserved field.

text_length

Direction: Input/Output Type: Integer

X9.9 Data Editing (CSNB9ED)

Chapter 10. Utilities 309

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive, nonzero value. On output,
text_length is updated with an integer that is the length of the edited text.

source_text

Direction: Input Type: String

This parameter contains the string to edit.

target_text

Direction: Output Type: String

The edited text that the callable service returns.

Usage Notes
This service is structured differently from the other services. It runs in the caller's
address space in the caller's key and mode.

ICSF need not be active for the service to run. There are no pre-processing or
post-processing exits that are enabled for this service. While running, this service
does not issue any calls to RACF.

X9.9 Data Editing (CSNB9ED)

310 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 11. Trusted Key Entry Workstation Interfaces

For S/390 Enterprise Servers, the S/390 Multiprise, and the IBM Eserver zSeries,
you can order an optional feature, the Trusted Key Entry (TKE) workstation. You
can use this to load DES and PKA master keys, SYM-MK and ASYM-MK master
keys on the PCI Cryptographic Coprocessor, and securely add operational
key-encrypting keys and PIN keys to the CKDS. TKE uses the PKSC interface
callable service (CSFPKSC) for support of the Cryptographic Coprocessor Feature
and the PCI interface callable service (CSFPCI) for the support of the PCI
Cryptographic Coprocessor.

This chapter describes the following callable services:

v “PCI Interface Callable Service (CSFPCI)”

v “PKSC Interface Callable Service (CSFPKSC)” on page 315

PCI Interface Callable Service (CSFPCI)
TKE uses this callable service to send a request to a specific PCI card queue and
remove the corresponding response when complete. This service also allows the
TKE workstation to query the list of access control points which may be enabled or
disabled by a TKE user. This service is synchronous. The return and reason codes
reflect the success or failure of the NQAP and DQAP functions rather than the
success or failure of the actual PCI request.

Format

CALL CSFPCI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
target_pci_coprocessor,
target_pci_coprocessor_serial_number,
request_block_length,
request_block,
request_data_block_length,
request_data_block,
reply_block_length,
reply_block,
reply_data_block_length,
reply_data_block,
masks_length,
masks_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. See
Appendix A, “ICSF and TSS Return and Reason Codes”, for a list of return
codes.

© Copyright IBM Corp. 1997, 2002 311

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. See Appendix A, “ICSF and TSS Return
and Reason Codes” for a list of reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in rule_array. The value must be 1.

rule_array

Direction: Input Type: String

Keyword that provides control information to callable services. The keyword is
left-justified in an 8-byte field and padded on the right with blanks. The keyword
must be in contiguous storage. The keywords listed below are mutually
exclusive.

Table 82. Keywords for PCI Interface Callable Service

Keyword Meaning

ACPOINTS Queries the list of access control points which may be
enabled or disabled by a TKE user.

ACTIVECP This keyword is a request to call the PCI card initialization
code to revalidate the PCI cards. After the PCI card
initialization is completed, both the 64-bit mask indicating
which of the PCI cards are online and 64-bit mask indicating
which of the PCI cards are active will be returned. This
keyword is used by the TKE workstation code after the
ACTIVATE portion of the domain zeroize command. This is to
ensure that the status of the PCI card is accurately reflected
to the users. See the masks_data parameter description for
more information.

APNUM Specifies the target_pci_coprocessor field to be used.

SERIALNO Specifies the target_pci_coprocessor_number field to be used

PCI Interface (CSFPCI)

312 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 82. Keywords for PCI Interface Callable Service (continued)

Keyword Meaning

PCIMASKS This keyword is a request to return both the 64-bit mask
indicating which of the PCI cards are online and 64-bit mask
indicating which of the PCI cards are active. See the
masks_data parameter description for more information.

Note: When the PCIMASKS and ACTIVEP keywords are specified, the
request_data_block_length, request_data_block,
reply_data_block_length, and the reply_data_block parameters are
ignored.

target_pci_coprocessor

Direction: Input Type: Integer

The PCI Cryptographic Coprocessor card to which this request is directed.
Value is 1 - 64.

target_pci_coprocessor_serial_number

Direction: Input Type: String

The PCI Cryptographic Coprocessor card serial number to which the request is
directed. This parameter may be used instead of the target_pci_coprocessor.
The length is 8 bytes.

request_block_length

Direction: Input/Output Type: Integer

Length of CPRB and the request block in the request_block field. The maximum
length allowed is 5,500 bytes.

request_block

Direction: Input Type: String

PCI Cryptographic Coprocessor command or query request for the target PCI
Cryptographic Coprocessor. This is the complete CPRB and request block to be
processed by the PCI Cryptographic Coprocessor.

request_data_block_length

Direction: Input Type: Integer

Length of request data block in the request_data_block field. The maximum
length allowed is 6,400 bytes. The length field must be a multiple of 4.

request_data_block

Direction: Input Type: String

The data that accompanies the request_block field.

PCI Interface (CSFPCI)

Chapter 11. Trusted Key Entry Workstation Interfaces 313

reply_block_length

Direction: Input/Output Type: Integer

Length of CPRB and the reply block in the reply_block field. The maximum
length allowed is 5,500 bytes. This field is updated on output with the actual
length of the reply_block field.

reply_block

Direction: Output Type: String

PCI Cryptographic Coprocessor reply from the target PCI Cryptographic
Coprocessor. This is the CPRB and reply block that has been processed by the
PCI Cryptographic Coprocessor.

reply_data_block_length

Direction: Input/Output Type: Integer

Length of reply block in the reply_data_block field. The maximum length
allowed is 6,400 bytes. This field is updated on output with the actual length of
the reply_data_block field. This length field must be a multiple of 4. For the
ACPOINTS keyword, the minimum length is 2572 bytes.

reply_data_block

Direction: Output Type: String

The data that accompanies the reply_block field.

masks_length

Direction: Input Type: Integer

Length of the reply data being returned in the masks_data field. The length
must be 32 bytes. This field is only valid when the input rule_array keyword is
PCIMASKS or ACTIVECP. For all other rule_array keywords, this field is
ignored.

masks_data

Direction: Output Type: String

The data being returned for all requests. The first 8 bytes indicate the count of
the PCI cards online. The second 8 bytes indicate a bit mask of the actual PCI
cards brought online. The third 8 bytes indicate the count of the PCI cards
active. The fourth 8 bytes indicate a bit mask of the actual PCI cards that are
active. For the ACTIVECP keyword, if the PCI card initialization failed, the
appropriate return code and reason code is issued and the masks_data field will
contain zeros.

Restriction
The caller must be in task mode, not in SRB mode.

PCI Interface (CSFPCI)

314 z/OS V1R3.0 ICSF Application Programmer’s Guide

Usage Note
The target_pci_coprocessor, the target_pci_coprocessor_serial_number, the
request_block, the reply_block, the request_block_data_block, and the
reply_block_data_block, are recorded in SMF Record Type 82, subtype 16.

PKSC Interface Callable Service (CSFPKSC)
TKE uses this callable service to send a request to a specific cryptographic module
and receive a corresponding response when processing is complete. The service is
synchronous. Note that the return and reason codes reflect the success or failure of
CSFPKSC’s interaction with the cryptographic module rather than the success or
failure of the cryptographic module request. The response block contains the results
of the cryptographic module request.

Format

CALL CSFPKSC(
return_code,
reason_code,
exit_data_length,
exit_data,
target_crypto_module,
request_length,
request,
response)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

PCI Interface (CSFPCI)

Chapter 11. Trusted Key Entry Workstation Interfaces 315

The data that is passed to the installation exit.

target_crypto_module

Direction: Input Type: Integer

Cryptographic module to which this request is directed. Value is 0 or 1.

request_length

Direction: Input Type: Integer

Length of request message in the request field. The maximum length allowed is
1024 bytes.

request

Direction: Input Type: String

PKSC command or query request for the target cryptographic module. This is
the complete architected command or query for the cryptographic module to
process.

response

Direction: Output Type: String

Area where the PKSC response from the target cryptographic module is
returned to the caller. The area returned can be up to 512 bytes.

Restrictions
The caller must be in task mode, not in SRB mode.

The format and content of the PKSC request and response areas are proprietary
IBM hardware information that may be licensed. Customers interested in this
information may contact the IBM Director of Licensing. For the address, refer to
“Notices” on page 453.

PKSC Interface (CSFPKSC)

316 z/OS V1R3.0 ICSF Application Programmer’s Guide

Chapter 12. Managing Keys According to the ANSI X9.17
Standard

This chapter describes the callable services that support the ANSI X9.17 key
management standard:
v “ANSI X9.17 EDC Generate (CSNAEGN)”
v “ANSI X9.17 Key Export (CSNAKEX)” on page 319
v “ANSI X9.17 Key Import (CSNAKIM)” on page 324
v “ANSI X9.17 Key Translate (CSNAKTR)” on page 328
v “ANSI X9.17 Transport Key Partial Notarize (CSNATKN)” on page 333

The following callable services, that are described in other sections of this book,
also support the ANSI X9.17 key management standard:
v “Key Generate (CSNBKGN)” on page 82
v “Key Part Import (CSNBKPI)” on page 97
v “Key Token Build (CSNBKTB)” on page 109

ANSI X9.17 EDC Generate (CSNAEGN)
Use the ANSI X9.17 EDC generate callable service to generate an error detection
code (EDC) on a text string. The service calculates the EDC by by using a key
value of X'0123456789ABCDEF' to generate a MAC on the specified text string, as
defined by the ANSI X9.17 standard.

Format

CALL CSNAEGN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector,
EDC)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are

© Copyright IBM Corp. 1997, 2002 317

assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Currently there
are no keywords that are defined for this variable, but you must declare the
variable. To do so, declare an area of blanks of any length.

text_length

Direction: Input Type: Integer

The length of the user-supplied text parameter for which the service should
calculate the EDC.

text

Direction: Input Type: String

The application-supplied text field for which the service is to generate the EDC.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. The chaining vector
permits data to be chained from one call to another. ICSF ignores the
information in this field, but you must declare an 18-byte string.

EDC

Direction: Output Type: String

ANSI X9·17 EDC Generate (CSNAEGN)

318 z/OS V1R3.0 ICSF Application Programmer’s Guide

A 9-byte field where the callable service returns the EDC generated as two
groups of four ASCII-encoded hexadecimal characters that are separated by an
ASCII space character.

Usage Notes
The ANSI X9.17 standard states that for EDC, before the service generates the
MAC the caller must first edit the input text according to section 4.3 of ANSI
X9.9-1982. It is the caller’s responsibility to do the editing before calling the ANSI
X9.17 EDC generate service. If the supplied text is not a multiple of 8, the service
pads the text with X'00' up to a multiple of 8, as specified in ANSI X9.9-1.

To use this service you must have the ANSI system keys installed in the CKDS.

ANSI X9.17 Key Export (CSNAKEX)
Use the ANSI X9.17 key export callable service to export a DATA key or a pair of
DATA keys, along with an ANSI key-encrypting key (AKEK), using the ANSI X9.17
protocol. This service converts a single DATA key, or combines two DATA keys, into
a single MAC key. You can use the MAC key in either, or both, the MAC generation,
or MAC verification service to authenticate the service message. In addition, this
service also supports the export of a CCA IMPORTER or EXPORTER KEK.

If you export only DATA keys, the DATA keys are exported encrypted under the
specified transport AKEK. You have the option of applying the ANSI X9.17 key
offset or key notarization process to the transport AKEK.

If you export both DATA keys and an AKEK, the DATA keys are exported encrypted
under the key-encrypting key that is also being exported. The AKEK is exported
encrypted under the specified transport AKEK. You have the option of applying the
ANSI X9.17 key offset or key notarization process to the transport AKEK. The ANSI
X9.17 key offset process is applied to the source AKEK. Use the CKT keyword to
specify whether to use an offset of 0 or 1. Use an offset of 0 when sending the
DATA key to a key translation center along with a transport AKEK.

Note: You must create the cryptographic service message and maintain the offset
counter value that is associated with the AKEK.

ANSI X9·17 EDC Generate (CSNAEGN)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 319

Format

CALL CSNAKEX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_data_key_1_identifier,
source_data_key_2_identifier,
source_key_encrypting_key_identifier,
transport_key_identifier,
outbound_KEK_count,
target_data_key_1,
target_data_key_2,
target_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

ANSI X9·17 Key Export (CSNAKEX)

320 z/OS V1R3.0 ICSF Application Programmer’s Guide

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 4. If you specify 0, the callable service does not perform either
notarization or offset.

rule_array

Direction: Input Type: String

Zero to four keywords that provide control information to the callable service.
See the list of keywords in Table 83. The keywords must be in 8 to 32 bytes of
contiguous storage. Left-justify each keyword in its own 8-byte location and pad
on the right with blanks. You must specify this parameter even if you specify no
keyword.

Table 83. Keywords for ANSI X9.17 Key Export Rule Array

Keyword Meaning

Notarization and Offset Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value
obtained from the outbound_KEK_count parameter. The
transport key that the transport_key_identifier specifies
must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the origin_identifier, destination_identifier, and
outbound_KEK_count parameters.

OFFSET Perform ANSI X9.17 key offset processing using the origin
counter value obtained from the outbound_KEK_count
parameter.

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd
parity. This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

CCA-EXP Export a CCA EXPORTER KEK. Requires NOCV keys to
be enabled.

CCA-IMP Export a CCA IMPORTER KEK. Requires NOCV keys to
be enabled.

1-KD Export one DATA key. This is the default parameter.

1-KD+KK Export one DATA key and a single-length AKEK.

1-KD+*KK Export one DATA key and a double-length AKEK.

2-KD Export two DATA keys.

2-KD+KK Export two DATA keys and a single-length AKEK.

2-KD+*KK Export two DATA keys and a double-length AKEK.

Data Key Offset Value (optional)

CKT Valid only when a key-encrypting key is being exported
along with a DATA key. If this keyword is specified, any
DATA keys being exported are encrypted under the
key-encrypting key using an offset value of 0. If this
keyword is not specified (this is the default), any DATA
keys being exported are encrypted under the
key-encrypting key using an offset value of 1. The CKT
keyword is not valid with CCA-IMP or CCA-EXP keywords.

ANSI X9·17 Key Export (CSNAKEX)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 321

origin_identifier

Direction: Input Type: String

This parameter is valid if the NOTARIZE keyword is specified. It specifies an
area that contains a 16-byte string that contains the origin identifier that is
defined in the ANSI X9.17 standard. The string must be ASCII characters,
left-justified, and padded on the right by space characters. This parameter must
be a minimum of four, non-space characters. ICSF ignores this parameter if you
specify the OFFSET or CPLT-NOT keyword in the rule_array parameter.

destination_identifier

Direction: Input Type: String

This parameter is valid if the NOTARIZE keyword is specified. It specifies an
area that contains a 16-byte string. The 16-byte string contains the destination
identifier that is defined in the ANSI X9.17 standard. The string must be ASCII
characters, left-justified, and padded on the right by space characters. This
parameter must be a minimum of four, non-space characters. ICSF ignores this
parameter if you specify the OFFSET or CPLT-NOT keyword in the rule_array
parameter.

source_data_key_1_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains a DATA key. ICSF ignores this field if you specify CCA-EXP or
CCA-IMP in the rule_array parameter.

source_data_key_2_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains a DATA key. This parameter is valid only if you specify 2-KD,
2-KD+KK, or 2-KD+*KK as the source key rule keyword on the rule_array
parameter. ICSF ignores this parameter if you specify other source key rule
keywords, or if you specify CCA-EXP or CCA-IMP in the rule_array parameter.

source_key_encrypting_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains either an AKEK, a CCA IMPORTER, or a CCA EXPORTER key. If this
parameter contains an AKEK, you must specify 1-KD+KK, 2-KD+KK, 1-KD+*KK,
or 2-KD+*KK for the source key rule on the rule_array parameter. If this
parameter contains a CCA IMPORTER or CCA EXPORTER key, you must
specify CCA-IMP or CCA-EXP, respectively, for the source key rule on the
rule_array parameter. ICSF ignores this field if you specify any other source key
rule keywords.

ANSI X9·17 Key Export (CSNAKEX)

322 z/OS V1R3.0 ICSF Application Programmer’s Guide

transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token or a label that refers to an
internal token for an AKEK.

outbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count that is used in the notarization
process. The count is an ASCII character string, left-justified, and padded on
the right by ASCII space characters. ICSF interprets a single ASCII space
character as a zero counter. The maximum value is 99999999.

target_data_key_1

Direction: Output Type: String

A 16-byte area where the exported data key 1 is returned. The enciphered key
is an ASCII-encoded hexadecimal string.

target_data_key_2

Direction: Output Type: String

A 16-byte area where the exported data key 2 is returned. The enciphered key
is an ASCII-encoded hexadecimal string. This key is returned if 2-KD, 2-KD+KK,
or 2-KD+*KK is specified in the rule_array parameter.

target_key_encrypting_key

Direction: Output Type: String

If the rule_array parameter specifies 1-KD+KK, 2-KD+KK, 1-KD+*KK, or
2-KD+*KK, this parameter specifies a 32-byte area that contains the exported
AKEK. If the rule_array parameter specifies CCA-IMP or CCA-EXP, this
parameter specifies a 32-byte area that contains the exported key-encrypting
key (KEK). The enciphered key is an ASCII-encoded hexadecimal string. If the
rule_array parameter specifies 1-KD+KK or 2-KD+KK, the 16-byte
ASCII-encoded output is left-justified in the field and the rest of the field remains
unchanged.

MAC_key_token

Direction: Output Type: String

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification process. This field is the
EXCLUSIVE OR of the two supplied DATA keys when the source key rule in the
rule_array parameter specifies 2-KD, 2-KD+KK, or 2-KD+*KK. When the source
key rule specifies 1-KD, the DATA key is converted to a MAC key and returned
as an internal token in this field.

ANSI X9·17 Key Export (CSNAKEX)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 323

Usage Note
You must install the ANSI system keys in the CKDS to use this service.

ANSI X9.17 Key Import (CSNAKIM)
Use the ANSI X9.17 key import callable service to import a DATA key or a pair of
DATA keys, along with an ANSI key-encrypting key (AKEK), using the ANSI X9.17
protocol. This service converts a single DATA key, or combines two DATA keys, into
a single MAC key. The MAC key can be used in either, or both, the MAC generation
or the MAC verification service to authenticate the service message. In addition, this
service also supports the import of the KEK to a CCA IMPORTER or EXPORTER
KEK, as well as an AKEK.

If you are importing only DATA keys, this service assumes that the DATA keys are
encrypted under the specified transport AKEK. You have the option of applying the
ANSI X9.17 key offset or key notarization process to the transport AKEK.

If you are importing both DATA keys and an AKEK, this service assumes that the
AKEK is encrypted under the specified transport AKEK. This service also assumes
that the DATA keys are encrypted under the source AKEK that is also being
imported. You have the option of applying the ANSI X9.17 key offset or key
notarization process to the transport AKEK. ICSF applies the ANSI X9.17 key offset
process to the source AKEK with an offset of 1.

Note: You must create the cryptographic service message and maintain the offset
counter value that is associated with the AKEK.

Format

CALL CSNAKIM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_data_key_1,
source_data_key_2,
source_key_encrypting_key,
inbound_KEK_count,
transport_key_identifier,
target_data_key_1,
target_data_key_2,
target_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

ANSI X9·17 Key Export (CSNAKEX)

324 z/OS V1R3.0 ICSF Application Programmer’s Guide

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 3. If you specify 0, ICSF does not perform either notarization or
offset.

rule_array

Direction: Input Type: String

Zero to three keywords that provide control information to the callable service.
See the list of keywords in Table 84. The keywords must be in 8 to 24 bytes of
contiguous storage. Each of the keywords must be left-justified in its own 8-byte
location and padded on the right with blanks. You must specify this parameter
even is you do not specify a keyword.

Table 84. Keywords for ANSI X9.17 Key Import Rule Array

Keyword Meaning

Notarization and Offset Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value
obtained from the inbound_KEK_count parameter. The
transport key that the transport_key_identifier specifies
must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the origin_identifier, destination_identifier, and
inbound_KEK_count parameters.

OFFSET Perform ANSI X9.17 key offset processing using the origin
counter value obtained from the inbound_KEK_count
parameter.

ANSI X9·17 Key Import (CSNAKIM)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 325

Table 84. Keywords for ANSI X9.17 Key Import Rule Array (continued)

Keyword Meaning

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd
parity. This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

CCA-EXP Import a key-encrypting key as a CCA EXPORTER.
Requires NOCV keys to be enabled.

CCA-IMP Import a key-encrypting key as a CCA IMPORTER.
Requires NOCV keys to be enabled.

1-KD Import one DATA key. This is the default parameter.

1-KD+KK Import one DATA key and a single-length AKEK.

1-KD+*KK Import one DATA key and a double-length AKEK.

2-KD Import two DATA keys.

2-KD+KK Import two DATA keys and a single-length AKEK.

2-KD+*KK Import two DATA keys and a double-length AKEK.

origin_identifier

Direction: Input Type: String

This parameter is valid if you specify the NOTARIZE keyword in the rule_array
parameter. It specifies an area that contains a 16-byte string that contains the
origin identifier that is defined in the ANSI X9.17 standard. The string must be
ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four, non-space characters. This parameter is
ignored if the OFFSET or CPLT-NOT keyword is specified.

destination_identifier

Direction: Input Type: String

This parameter is valid if you specify the NOTARIZE keyword in the rule_array
parameter. It specifies an area that contains a 16-byte string that contains the
destination identifier that is defined in the ANSI X9.17 standard. The string must
be ASCII characters, left-justified, and padded on the right by space characters.
It must be a minimum of four non-space characters. This parameter is ignored if
the OFFSET or CPLT-NOT keyword is specified.

source_data_key_1

Direction: Input Type: String

A 16-byte area that contains the enciphered DATA key to be imported. You must
supply the DATA key as an ASCII-encoded hexadecimal string. The field is
ignored if the rule_array parameter specifies CCA-IMP or CCA-EXP.

source_data_key_2

Direction: Input Type: String

ANSI X9·17 Key Import (CSNAKIM)

326 z/OS V1R3.0 ICSF Application Programmer’s Guide

A 16-byte area that contains the second enciphered DATA key to be imported.
This parameter is valid only if the rule_array parameter specifies KK, or
2-KD+*KK. You must supply the key as an ASCII-encoded hexadecimal string.
This field is ignored if the rule_array parameter specifies other source key rules.

source_key_encrypting_key

Direction: Input Type: String

A 16- or 32-byte area that contains an enciphered AKEK, if the rule_array
parameter specifies either 1-KD+KK, 2-KD+KK, 1-KD+*KK, or 2-KD+*KK. This
parameter specifies a KEK, if the rule_array parameter specifies either
CCA-IMP or CCA-EXP. The area is 16 bytes if the rule_array parameter
specifies a single-length AKEK (1-KD+KK or 2-KD+KK). The area is 32 bytes if
the rule_array parameter specifies a double-length AKEK (1-KD+*KK or
2-KD+*KK). You must supply the key as an ASCII-encoded hexadecimal string.
This field is ignored if the rule_array parameter specifies 1-KD or 2-KD.

inbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count for use in the notarization process.
The count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token or a label that refers to an
internal token for an AKEK.

target_data_key_1

Direction: Output Type: String

A 64-byte area where the imported data key 1 is returned as an ICSF internal
key token. ICSF does not support the direct import by label.

target_data_key_2

Direction: Output Type: String

A 64-byte area where the imported data key 2 is returned as an ICSF internal
key token. ICSF does not support the direct import by label. This key is
returned if 2-KD, 2-KD+KK, or 2-KD+*KK is specified in the rule_array
parameter.

target_key_encrypting_key

Direction: Output Type: String

ANSI X9·17 Key Import (CSNAKIM)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 327

A 64-byte area where the imported key-encrypting key is returned as an ICSF
internal key token. If the rule_array parameter specifies 1-KD+KK, 1-KD+*KK,
2-KD+KK, or 2-KD+*KK, the internal key token contains an AKEK. If the
rule_array parameter specifies either CCA-IMP or CCA-EXP, the internal token
contains a CCA IMPORTER or a CCA EXPORTER, respectively.

MAC_key_token

Direction: Output Type: String

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification function. This field is the
EXCLUSIVE OR of the two imported DATA keys if the source key rule in the
rule_array parameter specifies 2-KD, 2-KD+KK, or 2-KD+*KK. If the source key
rule in the rule_array parameter specifies 1-KD, ICSF converts the DATA key to
a MAC key and returns it as an internal token in this field.

Usage Note
You must install the ANSI system keys in the CKDS to use this service.

ANSI X9.17 Key Translate (CSNAKTR)
Use the ANSI X9.17 key translate callable service to translate a key from encryption
under one AKEK to encryption under another AKEK. In a single service call you can
translate either one or two encrypted DATA keys, or a single encrypted
key-encrypting key. In addition, this service also imports the supplied DATA keys. If
the rule_array parameter specifies 2-KD, this service exclusive-ORs the two
imported DATA keys and converts the result into a MAC key, which it returns in the
MAC_key_token field. The MAC key is used to perform MAC processing on the
service message. If the rule_array specifies keywords 1-KD and 2-KD, ICSF
translates only DATA keys. The service uses the inbound transport key-encrypting
key to decrypt the DATA keys, and uses the outbound transport key-encrypting key
to reencrypt the DATA keys. The service uses the ANSI X9.17 key offset process
during decryption or importing. The service can use the ANSI X9.17 notarization
process during reencryption or exporting of the DATA keys.

If the rule_array parameter specifies 1-KD+KK or 1-KD+*KK , the service translates
only the AKEK. The service uses the inbound transport key-encrypting key to
decrypt or import the input AKEK, applying the ANSI X9.17 offset process. The
service uses the outbound transport key-encrypting key to reencipher or export the
AKEK, with or without applying the optional ANSI X9.17 notarization process. ICSF
uses the inbound key-encrypting key that is being translated to import the supplied
DATA key, applying the ANSI X9.17 offset processing only with an offset of 0. The
DATA key is imported as above then converted to a MAC key token and returned in
the MAC_key_token field.

ANSI X9·17 Key Import (CSNAKIM)

328 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format

CALL CSNAKTR(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
inbound_KEK_count,
inbound_transport_key_identifier,
inbound_data_key_1,
inbound_data_key_2,
inbound_key_encrypting_key,
outbound_origin_identifier,
outbound_destination_identifier,
outbound_KEK_count,
outbound_transport_key_identifier,
outbound_data_key_1,
outbound_data_key_2,
outbound_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

ANSI X9·17 Key Translate (CSNAKTR)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 329

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 3. If you specify 0, the service does not perform notarization or
offset.

rule_array

Direction: Input Type: String

Zero to three keywords that provide control information to the callable service.
See the list of keywords in Table 85. The keywords must be in 8 to 24 bytes of
contiguous storage. Each of the keywords must be left-justified in its own 8-byte
location and padded on the right with blanks. You must specify this parameter
even if do not specify any keywords.

Table 85. Keywords for ANSI X9.17 Key Translate Rule Array

Keyword Meaning

Notarization Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value obtained
from the outbound_KEK_count parameter. The outbound
transport key specified must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the outbound_origin_identifier, the
outbound_destination_identifier,and the outbound_KEK_count.

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd parity.
This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

1-KD Import and translate one DATA key. This is the default
parameter.

1-KD+KK Import and translate one DATA key and a single-length AKEK.

1-KD+*KK Import and translate one DATA key and a double-length
AKEK.

2-KD Import and translate two DATA keys.

inbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count for use in the offset process. The
count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

inbound_transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label that refers to an
internal token for an AKEK.

ANSI X9·17 Key Translate (CSNAKTR)

330 z/OS V1R3.0 ICSF Application Programmer’s Guide

inbound_data_key_1

Direction: Input Type: String

A 16-byte area that contains the enciphered DATA key that the service is
importing and translating. You must specify the DATA key as an ASCII-encoded
hexadecimal string.

inbound_data_key_2

Direction: Input Type: String

A 16-byte area that contains the second enciphered DATA key that the service
is importing and translating. This field is valid if the rule_array parameter
specifies 2-KD. You must supply the key as an ASCII-encoded hexadecimal
string. This field is ignored if the rule_array parameter specifies other source
key rules.

inbound_key_encrypting_key

Direction: Input Type: String

A 16- or 32-byte area that contains an enciphered AKEK that the service is to
translate. The area is 16 bytes if the rule_array parameter specifies a source
key rule of single-length AKEK. The area is 32 bytes if the source key rule
specifies a double-length AKEK (1-KD+*KK). You must supply the key as an
ASCII-encoded hexadecimal string. ICSF ignores this field if the rule_array
specifies either 1-KD or 2-KD.

outbound_origin_identifier

Direction: Input Type: String

This parameter is valid if the rule_array parameter specifies a keyword of
NOTARIZE. It specifies an area that contains a 16-byte string that contains the
origin identifier that is defined in the ANSI X9.17 standard. The string must be
ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four non-space characters. ICSF ignores this
field if the rule_array parameter specifies a keyword of CPLT-NOT.

outbound_destination_identifier

Direction: Input Type: String

This parameter is valid if the rule_array parameter specifies a keyword of
NOTARIZE. It specifies an area that contains a 16-byte string that contains the
destination identifier that is defined in the ANSI X9.17 standard. The string must
be ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four non-space characters. This parameter is
ignored if the rule_array parameter specifies a keyword of CPLT-NOT.

outbound_KEK_count

Direction: Input Type: String

ANSI X9·17 Key Translate (CSNAKTR)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 331

An 8-byte area that contains an ASCII count for use in the notarization process.
The count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

outbound_transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label that refers to an
internal token for an AKEK.

outbound_data_key_1

Direction: Output Type: String

A 16-byte area where the service returns the translated data key 1 an
ASCII-encoded hexadecimal string. The service returns the key only if the
rule_array specifies 1-KD or 2-KD. ICSF ignores this field if the rule_array
parameter specifies either 1-KD+KK or 1-KD+*KK.

outbound_data_key_2

Direction: Output Type: String

A 16-byte area where the service returns the translated data key 2 as an
ASCII-encoded hexadecimal string. The service returns the key only if the
rule_array parameter specifies 2-KD. ICSF ignores this field if the rule_array
parameter specifies 1-KD, 1-KD+KK, or 1-KD+*KK.

outbound_key_encrypting_key

Direction: Output Type: String

A 16- or 32-byte area that contains the enciphered, translated AKEK. The area
is 16 bytes if the rule_array parameter specifies a single-length AKEK
(1-KD+KK). The area is 32 bytes if the rule_array parameter specifies a
double-length AKEK (1-KD+*KK). The service returns the key as an
ASCII-encoded hexadecimal string. ICSF ignores this field if the rule_array
parameter specifies either 1-KD or 2-KD.

MAC_key_token

Direction: Output Type: String

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification process. This field is the
EXCLUSIVE OR of the two imported DATA keys when the rule_array parameter
specifies 2-KD for the source key rule. If the rule_array parameter specifies
1-KD, the service returns the imported key in this field as an ICSF internal key
token.

Usage Note
You must install the ANSI system keys in the CKDS to use this service.

ANSI X9·17 Key Translate (CSNAKTR)

332 z/OS V1R3.0 ICSF Application Programmer’s Guide

ANSI X9.17 Transport Key Partial Notarize (CSNATKN)
Use the ANSI X9.17 transport key partial notarize callable service to preprocess an
ANSI X9.17 transport key-encrypting key with origin and destination identifiers.
ICSF completes the notarization process when you use the partially notarized key in
the ANSI X9.17 key export, ANSI X9.17 key import, or ANSI X9.17 key translate
services and specify the CPLT-NOT rule_array keyword.

Note: You cannot reverse the partial notarization process. If you want to keep the
original value of the AKEK, you must record the value.

Format

CALL CSNATKN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_transport_key_identifier,
target_transport_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

ANSI X9·17 Transport Key Partial Notarize (CSNATKN)

Chapter 12. Managing Keys According to the ANSI X9.17 Standard 333

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Currently no
rule_array keywords are defined; thus, this field must be set to 0.

rule_array

Direction: Input Type: String

Currently, no rule_array keywords are defined for this service. You must still
specify this parameter for possible future use.

origin_identifier

Direction: Input Type: String

A 16-byte string that contains the origin identifier that is defined in the ANSI
X9.17 standard. The string must be ASCII characters, left-justified, and padded
on the right by space characters. The string must be a minimum of four
non-space characters.

destination_identifier

Direction: Input Type: String

A 16-byte string that contains the destination identifier that is defined in the
ANSI X9.17 standard. The string must be ASCII characters, left-justified, and
padded on the right by space characters. The string must be a minimum of four
non-space characters.

source_transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label of an internal
token for an AKEK that permits notarization.

target_transport_key_identifier

Direction: Output Type: String

A 64-byte area where the internal token of a partially notarized AKEK will be
returned. This AKEK cannot be used directly as a notarizing KEK until the
notarization process has been completed. To do this, specify CPLT-NOT as the
rule_array keyword in any service in which you intend to use this key as a
notarizing KEK.

Usage Note
You must install the ANSI system keys in the CKDS to use this service.

ANSI X9·17 Transport Key Partial Notarize (CSNATKN)

334 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix A. ICSF and TSS Return and Reason Codes

This appendix includes the following information:

v Return codes and reason codes issued on the completion of a call to an ICSF
callable service

v Return codes and reason codes issued on the completion of a process on a PCI
Cryptographic Coprocessor

v Conversion tables showing the relationship between ICSF and Transaction
Security System return and reason codes. ICSF or TSS return and reason codes
can be specified in the installation options dataset on the REASONCODES
parameter. If the REASONCODES option is not specified, the default of
REASONCODES(ICSF) is used.

ICSF Return Codes and Reason Codes
This section describes the ICSF return codes and reason codes and also lists ICSF
to TSS return codes and reason codes. Each ICSF return code returns unique
reason codes to your application program. The reason codes associated with each
return code are described in the following sections. The reason code tables present
the ICSF hexadecimal code followed by the decimal code in parenthesis. If there is
a 1-to-1 mapping, the codes will be converted. If there is not a map to TSS, the
column will be blank. If there are multiple mappings, they will be listed as reference
only and will not be converted.

Return Codes
Table 86 lists return codes from the ICSF callable services.

Table 86. ICSF Return Codes

Return Code Hex
(Decimal) Description

Return Code 0 (0) The call to the service or PCI Cryptographic Coprocessor was successfully processed. See
the reason code for more information.

Return Code 4 (4) The call to the service or PCI Cryptographic Coprocessor was successfully processed, but
some minor event occurred during processing. See the reason code for more information.

User action: Review the reason code.

Return Code 8 (8) The call to the service or PCI Cryptographic Coprocessor was unsuccessful. The parameters
passed into the call are unchanged, except for the return code and reason code. There are
rare examples where output areas are filled, but their contents are not guaranteed to be
accurate. These are described under the appropriate reason code descriptions. The reason
code identifies which error was found.

User action: Review the reason code, correct the problem, and retry the call.

Return Code C (12) The call to the service or PCI Cryptographic Coprocessor could not be processed because
ICSF was not active, ICSF found something wrong in its environment, a TSS security
product is not available, or a processing error occurred in a TSS product. The parameters
passed into the call are unchanged, except for the return code and reason code.

User action: Review the reason code and take the appropriate action.

© Copyright IBM Corp. 1997, 2002 335

Table 86. ICSF Return Codes (continued)

Return Code Hex
(Decimal) Description

Return Code 10 (16) The call to the service or PCI Cryptographic Coprocessor could not be processed because
ICSF found something seriously wrong in its environment or a processing error occurred in
the PCI Cryptographic Coprocessor. The parameters passed into the call are unchanged,
except for the return code and reason code.

User action: Review the reason code and contact your system programmer.

ICSF Reason Codes for Return Code 0 (0)
Table 87 lists reason codes returned from callable services that give return code 0.

Table 87. ICSF Reason Codes for Return Code 0 (0)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

0 (0) 0 (0) The call to the ICSF callable service or TSS verb was successfully
processed. No error was encountered.

User action: None.

4 (4) 2 (2) The call to the ICSF callable service or TSS verb was successfully
processed. A minor error was detected. A key used in the service did not
have odd parity. This key could be one provided by you as a parameter or
be one (perhaps of many) that was retrieved from the in-storage CKDS.

User action: Refer to the reason code obtained when the key passed to
this service was transformed into operational form using clear key import,
multiple clear key import, key import, secure key import, or multiple secure
key import callable services. Check if any of the services prepared an even
parity key. If one of these service reported an even parity key, you need to
know which key is affected. If none of these services identified an even
parity key, then the even parity key detected was found on the CKDS.
Report this to your administrator.

8 (8) 8 (8) The key record read callable service attempted to read a NULL key record.
The returned key token contains only binary zeros.

User action: None required.

2710 (10000) 2710 (10000) The call to the TSS verb was successfully processed. The keys in one or
more key identifiers have been reenciphered from encipherment under the
old master key to encipherment under the current master key.

User action: If you obtained your operational token from a file, replace the
token in the file with the token just returned from ICSF.

Management of internal tokens is a user responsibility. Consider the
possible case where the token for this call was fetched from a file, and
where this reason code is ignored. For the next invocation of the service,
the token will be fetched from the file again, and the service will give this
reason code again. If this continues until the master key is changed again,
then the next use of the internal token will fail.

ICSF Reason Codes for Return Code 4 (4)
Table 88 on page 337 lists reason codes returned from callable services that give
return code 4.

336 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 88. ICSF Reason Codes for Return Code 4 (4)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

0 (0) 0 (0) Master key verification warning. There is a possible mismatch between the
master key verification pattern in the CKDS and the system master key
verification pattern.

User action: Ensure that you specified the correct CKDS. If you specified
the correct CKDS, check to see if the data set has been corrupted.

7D0 (2000) 014 (020) The input text length was odd rather than even. The right nibble of the last
byte is padded with X'00'.

User action: None

BBA (3002) The call to the CVV Verify callable service was successfully processed.
However, the trial CVV that was supplied does not match the generated
CVV. In addition, a key in the key identifier has been reenciphered.

User action: See reason code 4000 for more details about the incorrect
CVV. See reason code 10000 for more details about the key
reencipherment.

BD4 (3028) 013 (019) The call to the Encrypted PIN verify (PINVER) callable service was
successfully processed. However, the trial PIN that was supplied does not
match the PIN in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be
zero, check that you are using the correct key.

BD8 (3032) 013 (019) This is a combination reason code value. The call to the Encrypted PIN
verify (PINVER) callable service was successfully processed. However, the
trial PIN that was supplied does not match the PIN in the PIN block.

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 3028 for more detail about the incorrect
PIN. See reason code 10000 for more detail about the key reencipherment.

FA0 (4000) 01 (01) The CVV did not verify.

User action: Regenerate the CVV.

1F40 (8000) 01 (01) The call to the MAC verification (MACVER) callable service was
successfully processed. However, the trial MAC that you supplied does not
match that of the message text.

User action: The message text may have been modified, such that its
contents cannot be trusted. If you expected the reason code to be zero,
check that you are using the correct key. Check that all segments of the
message were presented and in the correct sequence. Also check that the
trial MAC corresponds to the message being authenticated.

1F44 (8004) 01 (01) This is a combination reason code value. The call to the MAC verification
(MACVER) callable service was successfully processed. However, the trial
MAC that was supplied does not match the message text provided.

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 8000 for more detail about the incorrect
MAC. See reason code 10000 for more detail about the key
reencipherment.

Appendix A. ICSF and TSS Return and Reason Codes 337

Table 88. ICSF Reason Codes for Return Code 4 (4) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2328 (9000) 01 (01) The call to the key test service processed successfully, but the key test
pattern was not verified.

User action: Investigate why the key failed. After determining this, you can
reinstall or regenerate the key.

232C (9004) 01 (01) This is a combination reason code value. The call to the key test service
processed successfully, but the key test pattern was not verified. Also, the
key token has been reenciphered.

User action: Investigate why the key failed. After determining this, you can
reinstall or regenerate the key.

2AF8 (11000) 1AD (429) The digital signature verify ICSF callable service or TSS verb completed
successfully but the supplied digital signature failed verification.

User action: None

36B8 (14008) 01 (01) The PKDS record failed the authentication test.

User action: The record has changed since ICSF wrote it to the PKDS.
The user action is application dependent.

ICSF Reason Codes for Return Code 8 (8)
Table 89 lists reason codes returned from callable services that give return code 8.

Most of these reason codes indicate that the call to the service was unsuccessful.
No cryptographic processing took place. Therefore, no output parameters were
filled. Exceptions to this are noted in the descriptions.

Table 89. ICSF Reason Codes for Return Code 8 (8)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

7D1 (2001) TKE: DH generator is greater than the modulus.

7D2 (2002) TKE: DH registers are not in a valid state for the requested operation.

7D3 (2003) TKE: TSN does not match TSN in pending change buffer.

7D4 (2004) 019 (025) A length parameter has an incorrect value. The value in the length
parameter could have been zero (when a positive value was required) or a
negative value. If the supplied value was positive, it could have been larger
than your installation’s defined maximum, or for MDC generation with no
padding, it could have been less than 16 or not an even multiple of 8.

User action: Check the length you specified. If necessary, check your
installation’s maximum length with your ICSF administrator. Correct the
error.

7D5 (2005) TKE: PCB data exceeds maximum data length.

7D8 (2008) A4 (164) Two parameters (perhaps the plaintext and ciphertext areas, or text_in and
text_out areas) overlap each other. That is, some part of these two areas
occupy the same address in memory. This condition cannot be processed.

User action: Determine which two areas are responsible, and redefine their
positions in memory.

338 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

7D9 (2009) TKE: ACI can not load both loads and profiles in one call.

7DA (2010) TKE: ACI can only load one role or one profile at a time.

7DB (2011) TKE: DH transport key algorithm match.

7DC (2012) 023 (035) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this
book under the appropriate callable service for the correct value.

7DD (2013) TKE: Length of hash pattern for keypart is not valid for DH transport key
algorithm specified.

7DE (2014) TKE: PCB buffer is empty.

7E0 (2016) 021 (033), 09D
(157)

The rule_array parameter contents are incorrect.

User action: Refer to the rule_array parameter described in this book
under the appropriate callable service for the correct value.

7E2 (2018) 021 (033) The form parameter specified in the random number generate callable
service should be ODD, EVEN, or RANDOM. One of these values was not
supplied.

User action: Change your parameter to use one of the required values for
the form parameter.

7E3 (2019) TKE: Signature in request CPRB did not verify.

7E4 (2020) TKE: TSN in request CPRB is not valid.

7E8 (2024) 302 (770), 041
(065)

A reserved field in a parameter, probably a key identifier, has a value other
than zero.

User action: Key identifiers should not be changed by application programs
for other uses. Review any processing you are performing on key identifiers
and leave the reserved fields in them at zero.

7EB (2027) TKE: DH transport key hash pattern doesn not match.

7EC (2028) 2C2 (706) While deciphering ciphertext that had been created using a padding
technique, it was found that the last byte of the plaintext did not contain a
valid count of pad characters.

Note that all cryptographic processing has taken place, and the clear_text
parameter contains the deciphered text.

User action: The text_length parameter was not reduced. Therefore, it
contains the length of the base message, plus the length of the padding
bytes and the count byte. Review how the message was padded before it
was enciphered. The count byte that is not valid was created before the
message’s encipherment.

You may need to check whether the ciphertext was not created using a
padding scheme. Otherwise, check with the creator of the ciphertext on the
method used to create it. You could also look at the plaintext to review the
padding scheme used, if any.

7ED (2029) TKE: Request data block hash does not match hash in CPRB.

7EE (2030) TKE: DH supplied hash length is not correct.

7EF (2031) Reply data block too large.

Appendix A. ICSF and TSS Return and Reason Codes 339

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

7F0 (2032) The key_form, key_type_1, and key_type_2 parameters for the key
generate callable service form a combination, a three-element string. This
combination is checked against all valid combinations. Your combination
was not found among this list.

User action: Check the allowable combinations described for each
parameter in Key Generate callable service and correct the appropriate
parameter(s).

7F1 (2033) TKE: Change type does not match PCB change type.

7F4 (2036) 0A5 (165) The contents of a chaining vector passed to a callable service are not valid.
If you called the MAC generation callable service, or the MDC generation
callable service with a MIDDLE or LAST segmenting rule, the count field
has a number that is not valid. If you called the MAC verification callable
service, then this will have been a MIDDLE or LAST segmenting rule.

User action: Check to ensure that the chaining vector is not modified by
your program. The chaining vector returned by ICSF should only be used to
process one message set, and not intermixed between alternating message
sets. This means that if you receive and process two or more independent
message streams, each should have its own chaining vector. Similarly,
each message stream should have its own key identifier.

If you use the same chaining vector and key identifier for alternating
message streams, you will not get the correct processing performed.

7F6 (2038) The caller must be in task mode, not SRB mode.

7F8 (2040) 0B5 (181), 03F
(063), 09A (154)

This check is based on the first byte in the key identifier parameter. The
key identifier provided is either an internal token, where an external or null
token was required; or an external or null token, where an internal token
was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a
key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you
have provided. Also check that your parameters are in the required
sequence.

800 (2048) The key_form is not valid for the key_type

User action: Review the key_form and key_type parameters. For a
key_type of IMP-PKA, the secure key import callable service supports only
a key_form of OP.

802 (2050) A UKPT keyword was specified, but there is an error in the PIN_profile key
serial number.

User action: Correct the PIN profile key serial number.

804 (2052) A single-length key, passed to the secure key import callable service in the
clear_key parameter, must be padded on the right with binary zeros. The
fact that it is a single-length key is identified by the key_form parameter,
which identifies the key as being DATA, MACGEN, MACVER, and so on.

User action: If you are providing a single-length key, pad the parameter on
the right with zeros. Alternatively, if you meant to pass a double-length key,
correct the key_form parameter to a valid double-length key type.

340 z/OS V1R3.0 ICSF Application Programmer’s Guide

|||
|

|

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

808 (2056) 029 (041) The key_form parameter is neither IM nor OP. Most constants, these
included, can be supplied in lower or uppercase. Note that this parameter is
4 bytes long, so the value IM or OP is not valid. They must be padded on
the right with blanks.

User action: Review the value provided and change it to IM or OP, as
required.

80C (2060) 02B (043) The key_length parameter passed to the key generate callable service
holds a value that is not valid.

User action: Review the value provided and change it as appropriate.

810 (2064) 0A0 (160) The key_type and the key_length are not consistent.

User action: Review the key_type parameter provided and match it with
the key_length parameter.

814 (2068) You supplied a key identifier or token to the key generate, key import,
multiple secure key import, key export, or key record write callable service.
This key identifier holds an importer or exporter key, and the NOCV bit is
on in the token. Only programs running in supervisor state or in a system
key (key 0–7) may provide a key identifier with this bit set on. Your program
was not running in supervisor state or a system key.

User action: Either use a different key identifier, or else run in supervisor
state or a system key.

818 (2072) A request was made to the key generate callable service to generate
double-length keys of SINGLE effective length, in the IMEX form. This
request is valid only if the kek_key_identifier_1 parameter identifies a
NOCV importer, and the caller (wrongly) supplies a CV importer. The
combination of IMEX for the key_form parameter and a CV importer
key-encrypting key can only be used for single-length keys.

User action: Either use a key identifier that holds (or identifies) a NOCV
importer, or specify a single-length key in the key_type parameter.

81C (2076) A request was made to the key import callable service to import a
single-length key. However, the right half of the key in the
source_key_identifier parameter is not zeros. Therefore, it appears to
identify the right half of a double-length key. This combination is not valid.
This error does not occur if you are using the word TOKEN in the key_type
parameter.

User action: Check that you specified the value in the key_type parameter
correctly, and that you are using the correct or corresponding
source_key_identifier parameter.

824 (2084) The key token is not valid for the CSNBTCK service. If the
source_key_identifier is an external token, then the kek_key_identifier
cannot be marked as CDMF.

User action: Correct the appropriate key identifiers.

828 (2088) The origin_identifier or destination_identifier you supplied is not a valid
ASCII hexadecimal string.

User action: Check that you specified a valid ASCII string for the
origin_identifier or destination_identifier parameter.

Appendix A. ICSF and TSS Return and Reason Codes 341

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

82C (2092) 079 (121) The source_key_identifier or inbound_key_identifier you supplied in an
ANSI X9.17 service is not a valid ASCII hexadecimal string.

User action: Check that you specified a valid ASCII string for the
source_key_identifier or inbound_key_identifier parameter.

830 (2096) 07A (122) The outbound_KEK_count or inbound_KEK_count you supplied is not a
valid ASCII hexadecimal string.

User action: Check that you specified a valid ASCII hexadecimal string for
the outbound_KEK_count or inbound_KEK_count parameter.

834 (2100) 2CB (715) You supplied a pad_character that is not valid for a Transaction Security
System compatibility parameter for which ICSF supports only one value; or,
you supplied a KEY keyword and a non-zero master_key_version_number
in the Key Token Build service; or, you supplied a non-zero regeneration
data length for a DSS key in the PKA Generate service.

User action: Check that you specified the valid value for the TSS
compatibility parameter.

838 (2104) 02D (045) An input character is not in the code table.

User action: Correct the code table or the source text.

83C (2108) 02F (047) An unused field must be binary zeros, and an unused key identifier field
generally must be zeros.

User action: Correct the parameter list.

840 (2112) The length is incorrect for the key type.

User action: Check the key length parameter. DATA keys may have a
length of 8, 16, or 24. DATAXLAT and MAC keys must have a length of 8.
All other keys should have a length of 16. Also check that the parameters
are in the required sequence.

844 (2116) 021 (033) Parameter contents or a parameter value is not correct.

User action: Specify a valid value for the parameter.

BB9 (3001) HCR7703 and higher systems - SET block decompose service was called
with an encrypted OAEP block with a block contents identifier that indicates
a PIN block is present. No PIN encrypting key was supplied to process the
PIN block. The block contents identifier is returned in the
block_contents_identifier parameter.

OR

HCRP220 or lower systems - A PKDS access has been attempted for a
PKA token which exceeds the maximum PKA token size of 1024 bytes.
This can occur if systems are sharing a PKDS and not all of the sharing
systems support PKA tokens larger than 1024 bytes.

User action: HCR7703 and higher systems - Supply a PIN encrypting key
and resubmit the job. HCRP220 and lower systems - Check the key label
supplied. The label must represent a PKDS record representing a PKA
token of length less than or equal to 1024 bytes.

342 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

BBC (3004) 064 (100) A request was made to the Clear PIN generate or Encrypted PIN verify
callable service, and the PIN_length parameter has a value outside the
valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_length parameter to be within the
valid range from 4 to 16.

BBE (3006) The UDX verb in the PCI Cryptographic Coprocessor is not authorized to
be executed.

BC0 (3008) 065 (101) A request was made to the Clear PIN generate callable service, and the
PIN_check_length parameter has a value outside the valid range. The valid
range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be
within the valid range from 4 to 16.

BC4 (3012) 069 (105) A request was made to the Clear PIN generate callable service to generate
a VISA-PVV PIN, and the trans_sec_parm field has a value outside the
valid range. The field being checked in the trans_sec_parm is the key
index, in the 12th byte. This trans_sec_parm field is part of the data_array
parameter.

User action: Correct the value in the key index, held within the
trans_sec_parm field in the data_array parameter, to hold a number from
the valid range.

BC8 (3016) 06A (106) A request was made to the Encrypted PIN translate or the Encrypted PIN
verify callable service, and the PIN block value in the input_PIN_profile or
output_PIN_profile parameter has a value that is not valid.

User action: Correct the PIN block value.

BD0 (3024) 06B (107) A request was made to the Encrypted PIN translate callable service and the
format control value in the input_PIN_profile or output_PIN_profile
parameter has a value that is not valid. The valid values are NONE or
PBVC.

User action: Correct the format control value to either NONE or PBVC.

BD4 (3028) 074 (116) A request was made to the Clear PIN generate callable service. The
clear_PIN supplied as part of the data_array parameter for an GBP-PINO
request begins with a zero (0). This value is not valid.

User action: Correct the clear_PIN value.

BDC (3036) 06F (111) A request was made to the Encrypted PIN translate callable service. The
sequence_number parameter was required, but was not the integer value
99999.

User action: Specify the integer value 99999.

BE0 (3040) 06E (110)-PAN,
028 (040)-ser.
code, 02A
(042)-exp. date,
066 (102)-dec
table, 067
(103)-val. table,
06C (198)-pad
data

The PAN, expiration date, service code, decimalization table data, validation
data, or pad data is not numeric (X'F0' through X'F9'). The parameter must
be character representations of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the
service that you called and change to the format and values required.

Appendix A. ICSF and TSS Return and Reason Codes 343

|||
|
|

|

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

FA0 (4000) 033 (051) The encipher and decipher callable services sometime require text
(plaintext or ciphertext) to have a length that is an exact multiple of 8 bytes.
Padding schemes always create ciphertext with a length that is an exact
multiple of 8. If you want to decipher ciphertext that was produced by a
padding scheme, and the text length is not an exact multiple of 8, then an
error has occurred. The CBC mode of enciphering requires a text length
that is an exact multiple of 8.

The ciphertext translate callable service cannot process ciphertext whose
length is not an exact multiple of 8.

User action: Review the requirements of the service you are using. Either
adjust the text you are processing or use another process rule.

1388 (5000) Target cryptographic module is not available in the configuration.

User action: Correct the target cryptographic module parameter and
resubmit.

138C (5004) Format of the cryptographic request message is not valid.

User action: Correct the request and resubmit it.

1390 (5008) Length of the cryptographic request message is not valid.

User action: Message length of request must be nonzero, a multiple of
eight, and less than the system maximum. Correct the request and
resubmit it.

2710 (10000) 01D (029), 00C
(012), 02B (043)

A key identifier was passed to a service or token. It is checked in detail to
ensure that it is a valid token, and that the fields within it are valid values.
There is a token validation value (TVV) in the token, which is a
non-cryptographic value. This value was again computed from the rest of
the token, and compared to the stored TVV. If these two values are not the
same, this reason code is returned.

User action: The contents of the token have been altered because it was
created by ICSF or TSS. Review your program to see how this could have
been caused.

2714 (10004) 018 (024), 030
(048)

A key identifier was passed to a service. The master key verification pattern
in the token shows that the key was created with a master key that is
neither the current master key nor the old master key. Therefore, it cannot
be reenciphered to the current master key.

User action: Re-import the key from its importable form (if you have it in
this form), or repeat the process you used to create the operational key
form. If you cannot do one of these, you cannot repeat any previous
cryptographic process that you performed with this token.

344 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

271C (10012) 01E (030) A key label was supplied for a key identifier parameter. This label is the
label of a key in the in-storage CKDS or the PKDS. Either the key could not
be found, or a key record with that label and the specific type required by
the ICSF callable service or TSS verb could not be found. For a retained
key label, this error code is also returned if the key is not found in the PCI
Cryptographic Coprocessor specified in the PKDS record.

User action: Check with your administrator if you believe that this key
should be in the in-storage CKDS or the PKDS. The administrator may be
able to bring it into storage. If this key cannot be in storage, use a different
label.

2720 (10016) 03D (061) You specified a value for a key_type parameter that is not an ICSF-defined
name.

User action: Review the ICSF key types and use the appropriate one.

2724 (10020) 027 (039) You specified the word TOKEN for a key_type parameter, but the
corresponding key identifier, which implies the key type to use, has a value
that is not valid in the control vector field. Therefore, a valid key type
cannot be determined.

User action: Review the value that you stored in the corresponding key
identifier. Check that the value for key_type is obtained from the appropriate
key_identifier parameter.

272C (10028) 027 (039) Either the left half of the control vector in a key identifier (internal or
external) equates to a key type that is not valid for the service you are
using, or the value is not that of any ICSF control vector. For example, an
exporter key-encrypting key is not valid in the key import callable service.

User action: Determine which key identifier is in error and use the key
identifier that is required by the service.

2730 (10032) 027 (039) Either the right half of the control vector in a key identifier (internal or
external) equates to a key type that is not valid for the service you are
using, or the value is not that of any ICSF control vector. For example, an
exporter key-encrypting key is not valid in the key import callable service.

User action: Determine which key identifier is in error and use the key
identifier that is required by the service.

2734 (10036) 027 (039) Either the complete control vector (CV) in a key identifier (internal or
external) equates to a key type that is not valid for the service you are
using, or the value is not that of any ICSF control vector.

The difference between this and reason codes 10028 and 10032 is that
each half of the control vector is valid, but as a combination, the whole is
not valid. For example, the left half of the control vector may be the
importer key-encrypting key and the right half may be the input
PIN-encrypting (IPINENC) key.

User action: Determine which key identifier is in error and use the key
identifier that is required by the service.

2738 (10040) 031 (049) Key identifiers contain a version number. The version number in a supplied
key identifier (internal or external) is inconsistent with one or more fields in
the key identifier, making the key identifier unusable.

User action: Use a token containing the required version number.

Appendix A. ICSF and TSS Return and Reason Codes 345

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

273C (10044) 0B7 (183) A cross-check of the control vector the key type implies has shown that it
does not correspond with the control vector present in the supplied internal
key identifier.

User action: Change either the key type or key identifier.

2740 (10048) 03D (061) The key_type parameter does not contain one of the valid types for the
service or the keyword TOKEN.

User action: Check the supplied parameter with the ICSF key types. If you
supplied the keyword TOKEN, check that you have padded it on the right
with blanks.

2744 (10052) 027 (039) A null key identifier was supplied and the key_type parameter contained the
word TOKEN. This combination of parameters is not valid.

User action: Use either a null key identifier or the word TOKEN, not both.

2748 (10056) You called the key import callable service. The importer key-encrypting key
is a NOCV importer and you specified TOKEN for the key_type parameter.
This combination is not valid.

User action: Specify a value in the key_type parameter for the operational
key form.

274C (10060) 03D (061) You called the key export callable service. A label was supplied in the
key_identifier parameter for the key to be exported and the key_type was
TOKEN. This combination is not valid because the service needs a key
type in order to retrieve a key from the CKDS.

User action: Specify the type of key to be exported in the key_type
parameter.

2754 (10068) 02F (047) A flag in a key identifier indicates the master key verification pattern
(MKVP) is not present in an internal key token. This setting is not valid.

User action: Use a token containing the required flag values.

2758 (10072) 02F (047) A flag in a key identifier indicates the encrypted key is not present in an
external token. This setting is not valid.

User action: Use a token containing the required flag values.

275C (10076) 02F (047) A flag in a key identifier indicates the control vector is not present. This
setting is not valid.

User action: Use a token containing the required flag values.

2760 (10080) An ICSF private flag in a key identifier has been set to a value that is not
valid.

User action: Use a token containing the required flag values. Do not
modify ICSF or the reserved flags for your own use.

2768 (10088) 027 (039) If you supplied a label in the key_identifier parameter, a record with the
supplied label was found in the CKDS, but the key type (CV) is not valid for
the service. If you supplied an internal key token for the key_identifier
parameter, it contained a key type that is not valid.

User action: Check with your ICSF administrator if you believe that this key
should be in the in-storage CKDS. The administrator may be able to bring it
into storage. If this key cannot be in storage, use a different label.

346 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

276C (10092) You supplied a source key that does not have odd parity and specified
ENFORCE as the parity rule on the rule_array parameter for either the
ANSI X9.17 key export, ANSI X9.17 key import, or ANSI X9.17 key
translate callable service.

User action: Either supply an ODD parity key or change the rule_array
parameter to specify a parity rule of IGNORE.

2770 (10096) The transport key you specified is a single-length key, which cannot be
used to encrypt a double-length AKEK or (*KK).

User action: Use a double-length AKEK for the transport key.

2774 (10100) You specified a transport key that cannot be notarized and specified the
keyword NOTARIZE in the rule_array parameter. The transport key may
have already been partially notarized.

User action: Use a transport key that allows notarization or change the
rule_array parameter keyword to CPLT-NOT.

2778 (10104) The AKEK you specified is either partially notarized or is a partial AKEK,
which is not valid for this service.

User action: Use a correct AKEK that is not partially notarized. A partially
notarized key can be used as a transport key if you specify CPLT-NOT in
the rule_array parameter.

277C (10108) You did not supply a partial AKEK for the key_identifier parameter of the
key part import service.

User action: Correct the key_id parameter.

2780 (10112) The transport key you specified has not been partially notarized and you
have specified CPTL-NOT for the rule_array parameter.

User action: Use a transport key that has been partially notarized or
change the rule_array parameter.

2784 (10116) You attempted to export an AKEK with a CCA key export service, which is
not supported.

User action: Use the ANSI X9.17 key export callable service (CSNAKEX).

2788 (10120) The internal key token you supplied, or the key token that was retrieved by
the label you supplied, contains a flag setting or data encryption algorithm
bit that is not valid for this service.

User action: Ensure that you supply a key token, or label, for a non-ANSI
key type.

278C (10124) 027 (039) The key identifier you supplied cannot be exported because there is a
prohibit-export restriction on the key.

User action: Use the correct key for the service.

2790 (10128) The keyword you supplied in the rule_array parameter is not consistent or
not valid with another parameter you specified. For example, the keyword
SINGLE is not valid with the key type of EXPORTER in the key token build
callable service.

User action: Correct either the rule_array parameter or the other
parameter.

Appendix A. ICSF and TSS Return and Reason Codes 347

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2AF8 (11000) 048 (072) The value specified for length parameter for a key token, key, or text field is
not valid.

User action: Correct the appropriate length field parameter.

2AFC (11004) 02F (047) The hash value (of the secret quantities) in the private key section of the
internal token failed validation. The values in the token are corrupted. You
cannot use this key.

User action: Recreate the token using the appropriate combination of the
PKA key token build, PKA key generate, and PKA key import callable
services.

2B00 (11008) 302 (770) The public or private key values are not valid. (For example, the modulus or
an exponent is zero.) You cannot use the key.

User action: You may need to recreate the token using the PKA key token
build or PKA key import callable service or regenerate the key values on
another platform.

2B04 (11012) 02F (047) The internal or external private key token contains flags that are not valid.

User action: You may need to recreate the token using the PKA key token
build or PKA key import callable service.

2B08 (11016) 02F (047) The calculated hash of the public information in the PKA token does not
match the hash in the private section of the token. The values in the token
are corrupted.

User action: Verify the public key section and the key name section of the
token. If the token is still rejected, then you need to recreate the token
using the appropriate combination of the PKA key token build, PKA key
generate, and PKA key import callable services.

2B0C (11020) 030 (048) The hash pattern of the PKA master key (SMK or KMMK) in the supplied
internal PKA private key token does not match the current system’s PKA
master key. This indicates the system PKA master key has changed since
the token was created. You cannot use the token.

User action: Recreate the token using the appropriate combination of the
PKA key token build, PKA key generate, and PKA key import callable
services.

2B10 (11024) 02F (047) The PKA tokens have incomplete values, for example, a PKA public key
token without modulus.

User action: Recreate the key.

2B14 (11028) 048 (072) The modulus of the PKA key is too short for processing the hash or PKCS
block.

User action: Either use a PKA key with a larger modulus size, use a hash
algorithm that generates a smaller hash (digital signature services), or
specify a shorter DATA key size (symmetric key export, symmetric key
generate).

2B18 (11032) 040 (064) The supplied private key can be used only for digital signature. Key
management services are disallowed.

User action: Supply a key with key management enabled.

348 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2B20 (11040) 042 (066) The recovered encryption block was not a valid PKCS-1.2 or zero-pad
format. (The format is verified according to the recovery method specified in
the rule-array.) If the recovery method specified was PKCS-1.2, refer to
PKCS-1.2 for the possible error in parsing the encryption block.

User action: Ensure that the parameters passed to CSNDSYI are correct.
Possible causes for this error are incorrect values for the RSA private key
or incorrect values in the RSA_enciphered_key parameter, which must be
formatted according to PKCS-1.2 or zero-pad rules when created.

2B24 (11044) 0B5 (181) The first section of a supplied PKA token was not a private or public key
section.

User action: Recreate the key.

2B28 (11048) The eyecatcher on the PKA internal private token is not valid.

User action: Reimport the private token using the PKA key import callable
service.

2B2C (11052) An incorrect PKA token was supplied. The service requires a private key
token.

User action: Supply a PKA private key token as input.

2B30 (11056) The input PKA token contains length fields that are not valid.

User action: Recreate the key token.

2B38 (11064) 2CF (719) The RSA-OAEP block did not verify after the decompose. The block type is
incorrect (must be X'03').

User action: Recreate the RSA-OAEP block.

2B3C (11068) 2D1 (721) The RSA-OAEP block did not verify after the decompose. The verification
code is not correct (must be all zeros).

User action: Recreate the RSA-OAEP block.

2B40 (11072) 2D0 (720) The RSA-OAEP block did not verify after the decompose. The random
number I is not correct (must be non-zero with the high-order bit equal to
zero).

User action: Recreate the RSA-OAEP block.

2B48 (11080) 041 (65), 2F8
(760)

The RSA public or private key specified a modulus length that is incorrect
for this service.

User action: Re-invoke the service with an RSA key with the proper
modulus length.

2B4C (11084) This service requires an RSA public key and the key identifier specified is
not a public key.

User action: Re-invoke the service with an RSA public key.

2B50 (11088) This service requires an RSA private key that is for signature use only.

User action: Re-invoke the service with a supported private key.

2B54 (11092) There was an invalid subsection in the PKA token.

User action: Correct the PKA token.

Appendix A. ICSF and TSS Return and Reason Codes 349

|

|

|

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2B58 (11096) 040 (064) This service requires an RSA private key that is for signature use. The
specified key may be used for key management purposes only.

User action: Re-invoke the service with a supported private key.

3E80 (16000) Reason code 0,
return code
308(776)

RACF failed your request to use this service.

User action: Contact your ICSF or RACF administrator if you need this
service.

3E84 (16004) Reason code 1,
return code
308(776)

RACF failed your request to use the key label.

User action: Contact your ICSF or RACF administrator if you need this
key.

3E8C (16012) You requested the conversion service, but you are not running in an
authorized state.

User action: You must be running in supervisor state to use the conversion
service. Contact your ICSF administrator.

3E90 (16016) 027 (039) The input/output field contained a valid internal token with the NOCV bit on
or encryption algorithm mark, but the key type was incorrect or did not
match the type of the generated or imported key. Processing failed.

User action: Correct the calling application.

3E94 (16020) You requested dynamic CKDS update services for a system key, which is
not allowed.

User action: Correct the calling application.

3E98 (16024) 0B5 (181) You called the key record write callable service, but the key token you
supplied is not valid.

User action: Check with your ICSF administrator if you believe that this key
should be in the in-storage CKDS. The administrator may be able to bring it
into storage. If this key cannot be in storage, use a different label.

3EA0 (16032) 020 (032) You called the key record create callable service, but the key_label
parameter syntax was incorrect.

User action: Correct key_label syntax.

3EA4 (16036) 02C (044) The key record create callable service requires that the key created not
already exist in the CKDS. A key of the same label was found.

User action: Make sure the application specifies the correct label. If the
label is correct, contact your ICSF security administrator or system
programmer.

3EA8 (16040) Data in the PKDS record did not match the expected data. This occurs if
the record does not contain a null PKA token and CHECK was specified.

User action: If the record is to be overwritten regardless of its content,
specify OVERLAY.

350 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 89. ICSF Reason Codes for Return Code 8 (8) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

3EAC (16044) One or more key labels specified as input to the PKA key generate or PKA
key import service incorrectly refer to a retained private key. If generating a
retained private key, this error may result from one of the following
conditions:

v The private key name of the retained private key being generated is the
same as an existing PKDS record, but the PKDS record label was not
specified as the input skeleton (source) key identifier.

v The label specified in the generated_key_token parameter as the target
for the retained private key was not the same as the private key name

If generating or importing a non-retained key, this error occurs when the
label specified as the target key specifies a retained private key. The
retained private key cannot be over-written.

User action: Make sure the application specifies the correct label. If the
label is correct, contact your ICSF security administrator or system
programmer.

3EB0 (16048) Retained keys on the PKDS cannot be deleted or updated using the PKDS
key record delete or PKDS key record write callable services, respectively.

User action: Use the retained key delete callable service to delete retained
keys.

ICSF Reason Codes for Return Code C (12)
Table 90 lists reason codes returned from callable services that give return code 12.
These reason codes indicate that the call to the callable service was not successful.
Either cryptographic processing did not take place, or the last cryptographic unit
was switched offline. Therefore, no output parameters were filled.

Note: The higher-order halfword of the reason code field for return code C (12)
may contain additional coding. See reason codes 273C and 2740 in the
following table. For example, in the reason code 42738, the 4 is an SVC 99
error code and the 2738 is listed in the table below.

Table 90. ICSF Reason Codes for Return Code C (12)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

0 (0) ICSF: ICSF is not available. Either ICSF was not started, or ICSF has
started, but does not have access to any cryptographic units. Your request
cannot be processed.

User action: Check the availability of ICSF with your ICSF administrator.

4 (4) The CKDS or PKDS management service you called is not available
because it has been disallowed by the ICSF User Control Functions panel.

User action: Contact the security administrator or system programmer to
determine why the CKDS or PKDS management services have been
disallowed.

Appendix A. ICSF and TSS Return and Reason Codes 351

Table 90. ICSF Reason Codes for Return Code C (12) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

8 (8) The service or algorithm is not available on current hardware. Your request
cannot be processed.

User action: Correct the calling program or run on applicable hardware.

C (12) The service that you called is unavailable because the installation exit for
that service had previously failed.

User action: Contact your ICSF administrator or system programmer.

10 (16) A requested installation service routine could not be found. Your request
was not processed.

User action: Contact your ICSF administrator or system programmer.

1C (28) Cryptographic asynchronous processor failed.

User action: Contact your IBM support center.

20 (32) Cryptographic asynchronous instruction was not executed.

User action: Ensure cryptographic services are enabled.

32 (50) An ICSF PKA service could not be performed because ICSF is being
terminated. Any of the PKA services can issue this.

User action: Review the reason code.

178C (6028) ESTAE could not be established in common I/O routines.

User action: Contact your system programmer or the IBM Support Center.

7D6 (2006) TKE: PCB service error.

7D7 (2007) TKE: Change type in PCB is not recognized.

7DF (2015) Domain in CPRB not enabled by EMB mask.

7E1 (2017) MKVP mismatch on Set MK.

7E5 (2021) PCI Cryptographic Coprocessor adapter disabled.

7E9 (2025) Enforcement mask error.

7F3 (2035) Intrusion latch has been tripped. Services disabled.

7F5 (2037) The domain specified is not valid.

7FB (2043) OA certificate not found.

1790 (6032) The dynamic allocation of the DASD copy of the CKDS or PKDS in use by
ICSF failed.

User action: Contact your ICSF security administrator or system
programmer. The SVC 99 error code will be placed in the high-order
halfword of the reason code field.

1794 (6036) A dynamic deallocation error occurred when closing and deallocating a
CKDS or PKDS.

User action: Contact your security administrator or system programmer.
The SVC 99 error code will be placed in the high-order halfword of the
reason code field.

352 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 90. ICSF Reason Codes for Return Code C (12) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2724 (10020) A key retrieved from the in-storage CKDS failed the MAC verification
(MACVER) check and is unusable.

User action: Contact your ICSF administrator.

2728 (10024) A key retrieved from the in-storage CKDS or a key to be written to the
PKDS was rejected for use by the installation exit.

User action: Contact your ICSF administrator or system programmer.

272C (10028) You cannot use the secure key import or multiple secure key import callable
services because the cryptographic unit is not enabled for processing. The
cryptographic unit is not in special secure mode or is disabled in the
environment control mask (ECM).

User action: Contact your ICSF administrator (your administrator can
enable the processing mode or the ECM).

2734 (10036) More than one key with the same label was found in the CKDS or PKDS.
This function requires a unique key per label. The probable cause may be
the use of an incorrect label pointing to a key type that allows multiple keys
per label.

User action: Make sure the application specifies the correct label. If the
label is correct, contact your ICSF security administrator or system
programmer to verify the contents of the CKDS or PKDS.

273C (10044) OPEN of the PKDS in use by ICSF failed.

User action: Contact your ICSF security administrator or system
programmer.

2740 (10048) 0C5 (197) I/O error reading or writing to the DASD copy of the CKDS or PKDS in use
by ICSF.

User action: Contact your ICSF security administrator or system
programmer. The RPL feedback code will be placed in the high-order
halfword of the reason code field.

2744 (10052) Automatic REFRESH to free storage in the linear section of the CKT failed.

User action: Contact your ICSF security administrator or system
programmer and request that a REFRESH be done.

274C (10060) The I/O subtask terminated for an unexpected reason before completing the
request. No dynamic CKDS or PKDS update services are possible at this
point.

User action: Contact your system programmer who can investigate the
problem and restart the I/O subtask by stopping and restarting ICSF.

2B04 (11012) This function is disabled in the environment control mask (ECM).

User action: Contact your ICSF administrator.

2B08 (11016) 2FC (764) The PKA master key is not in a valid state.

User action: Contact your ICSF administrator.

2B0C (11020) Return code 8,
reason code 30F
(783)

The modulus of the public or private key is larger than allowed and
configured in the CCC. You cannot use this key on this system.

User action: Regenerate the key with a smaller modulus size.

Appendix A. ICSF and TSS Return and Reason Codes 353

Table 90. ICSF Reason Codes for Return Code C (12) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2B10 (11024) The system administrator has used the ICSF User Control Functions panel
to disable the PKA functions.

User action: Wait until administrator functions are complete and the PKA
functions are again enabled.

2B18 (11032) A CAMQ is valid for PKSC but not for PKA.

User action: Contact your ICSF administrator.

2B1C (11036) A PKDS is not available for processing.

User action: Contact your ICSF administrator.

2B20 (11040) The PKDS Control Record hash pattern is not valid.

User action: Contact your ICSF administrator.

2B24 (11044) The PKDS could not be accessed.

User action: Contact your ICSF administrator.

2B28 (11048) The PCI Cryptographic Coprocessor failed.

User action: Contact your IBM support center.

2B2C (11052) The specific PCI Cryptographic Coprocessor requested for service is
temporarily unavailable. PKDS could not be accessed. The specific PCI
Cryptographic Coprocessor may be attempting some recovery action. If
recovery action is successful, the PCI Cryptographic Coprocessor will be
made available. If the recovery action fails, the PCI Cryptographic
Coprocessor will be made permanently unavailable.

User action: Retry the function.

2B30 (11056) The PCI Cryptographic Coprocessor failed. The response from the
processor was incomplete.

User action: Contact your IBM support center.

2B34 (11060) The service could not be performed because the required PCI
Cryptographic Coprocessor was not active.

User action: If the service required a specific PCI Cryptographic
Coprocessor, verify that the value specified is correct. Reissue the request
when the required PCI Cryptographic Coprocessor is available.

2B38 (11064) Service could not be performed because of a hardware error on the PCI
Cryptographic Coprocessor.

2EDC (11996) The Integrated Cryptographic Feature is not available for CKDS initialization
because the cryptographic unit is not in special secure mode.

User action: Contact your ICSF administrator.

2EE0 (12000) You cannot use the Clear PIN generate callable service because the
cryptographic unit is not enabled for processing. The cryptographic unit is
not in special secure mode.

User action: Contact your ICSF administrator who can enable the
processing mode.

354 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 90. ICSF Reason Codes for Return Code C (12) (continued)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

2EE4 (12004) An error occurred in a latch manager call.

User action: Contact your ICSF security administrator or system
programmer.

8CB4 (36020) A refresh of the CKDS failed because the DASD copy of the CKDS is
enciphered under the wrong master key. This may have resulted from an
automatic refresh during processing of the key record create callable
service.

User action: Contact your ICSF administrator.

ICSF Reason Codes for Return Code 10 (16)
Table 91 lists reason codes returned from callable services that give return code 16.

Table 91. ICSF Reason Codes for Return Code 10 (16)

ICSF Reason
Code Hex
(Decimal)

TSS Reason
Code Hex
(Decimal) Description

4 (4) ICSF: Your call to an ICSF callable service resulted in an abnormal ending.
The request parameter block failed consistency checking.

User action: Contact your system programmer or the IBM Support Center.

Transaction Security System Return Codes and Reason Codes
The following section describes the return codes and reason codes that are
returned after a call to a Transaction Security System verb has been completed. It
also lists TSS to ICSF return codes and reason codes. Each TSS return code
returns unique reason codes to your application program. The reason codes
associated with each return code are described in the following sections. The
reason code tables present the TSS hexadecimal code followed by the decimal
code in parenthesis. If there is a 1-to-1 mapping, the codes will be converted. If
there is not a map to ICSF, the column will be blank. If there are multiple mappings,
they will be listed as reference only and will not be converted.

TSS Reason Codes for Return Code 0 (0)
Table 92 lists reason codes returned from TSS verbs that give return code 0 and
any corresponding ICSF reason codes.

Table 92. TSS Reason Codes for Return Code 0 (0)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

0 (0) 0 (0) The call to the ICSF callable service or TSS verb was successfully
processed. No error was encountered.

User action: None.

Appendix A. ICSF and TSS Return and Reason Codes 355

Table 92. TSS Reason Codes for Return Code 0 (0) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

2 (2) 4 (4) The call to the ICSF callable service or TSS verb was successfully
processed. A minor error was detected. A key used in the service was
shown to have even parity. This key could be one provided by you as a
parameter or be one (perhaps of many) that was retrieved from the
in-storage CKDS.

User action: Refer to the reason code obtained when the key passed to
this service was transformed into operational form using clear key import,
multiple clear key import, key import, secure key import, or multiple secure
key import callable services. Check if any of the services prepared an even
parity key. If one of these service reported an even parity key, you need to
know which key is affected. If none of these services identified an even
parity key, then the even parity key detected was found on the CKDS.
Report this to your administrator.

8 (8) 8 (8) The key record read callable service attempted to read a NULL key record.
The returned key token contains only binary zeros.

User action: None required.

2710 (10000) 2710 (10000) The call to the TSS verb was successfully processed. The keys in one or
more key identifiers have been reenciphered from encipherment under the
old master key to encipherment under the current master key.

User action: If you obtained your operational token from a file, replace the
token in the file with the token just returned from ICSF.

Management of internal tokens is a user responsibility. Consider the
possible case where the token for this call was fetched from a file, and
where this reason code is ignored. For the next invocation of the service,
the token will be fetched from the file again, and the service will give this
reason code again. If this continues until the master key is changed again,
then the next use of the internal token will fail.

2711 (10001) The call to the TSS verb was successfully processed. The keys in one or
more key identifiers were encrypted under the old master key. The verb
was unable to reencipher the key.

TSS Reason Codes for Return Code 4 (4)
Table 93 lists reason codes returned from TSS verbs that give return code 4 and
any corresponding ICSF reason codes.

Table 93. TSS Reason Codes for Return Code 4 (4)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

01 (01) FA0 (4000), 1F40
(8000), 1F44
(8004), 2328
(9000), 232C
(9004), 36B8
(14008)

The verification test failed.

356 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 93. TSS Reason Codes for Return Code 4 (4) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

013 (019) BD4 (3028) The call to the Encrypted PIN verify (PINVER) callable service was
successfully processed. However, the trial PIN that was supplied does not
match the PIN in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be
zero, check that you are using the correct key.

014 (020) 7D0 (2000) The input text length was odd rather than even. The right nibble of the last
byte is padded with X'00'.

User action: None

0A6 (166) The control vector is not valid because of parity bits, anti-variant bits,
inconsistent KEK bits, or because bits 59 to 62 are not zero.

0B3 (179) The control vector keywords that are in the rule array are ignored.

1AD (429) 2AF8 (11000) The digital signature verify ICSF callable service or TSS verb completed
successfully but the supplied digital signature failed verification.

User action: None

Reason Codes for Return Code 8 (8)
Table 94 lists reason codes returned from TSS verbs that give return code 8 and
any corresponding ICSF reason codes.

Table 94. TSS Reason Codes for Return Code 8 (8)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

00C (012) 2710 (10000) A key identifier was passed to a service or token. It is checked in detail to
ensure that it is a valid token, and that the fields within it are valid values.
There is a token validation value (TVV) in the token, which is a
non-cryptographic value. This value was again computed from the rest of
the token, and compared to the stored TVV. If these two values are not the
same, this reason code is returned.

User action: The contents of the token have been altered because it was
created by ICSF or TSS. Review your program to see how this could have
been caused.

016 (022) The ID number in the request field is not valid. Missing section in PKA
token.

017 (023) An access to the data area was outside the data area boundary.

018 (024) 2714 (10004) The master key verification pattern is not valid.

01D (029) 2710 (10000) A key identifier was passed to a service or token. It is checked in detail to
ensure that it is a valid token, and that the fields within it are valid values.
There is a token validation value (TVV) in the token, which is a
non-cryptographic value. This value was again computed from the rest of
the token, and compared to the stored TVV. If these two values are not the
same, this reason code is returned.

User action: The contents of the token have been altered because it was
created by ICSF or TSS. Review your program to see how this could have
been caused.

Appendix A. ICSF and TSS Return and Reason Codes 357

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

01E (030) 271C (10012) A key label was supplied for a key identifier parameter. This label is the
label of a key in the in-storage CKDS or the PKDS. Either the key could not
be found, or a key record with that label and the specific type required by
the ICSF callable service or TSS verb could not be found. For a retained
key label, this error code is also returned if the key is not found in the PCI
Cryptographic Coprocessor specified in the PKDS record.

User action: Check with your administrator if you believe that this key
should be in the in-storage CKDS or the PKDS. The administrator may be
able to bring it into storage. If this key cannot be in storage, use a different
label.

01F (031) 272C (10028) The control vector did not specify a DATA key.

020 (032) 3EA0 (16032) You called the key record create callable service, but the key_label
parameter syntax was incorrect.

User action: Correct key_label syntax.

021 (033) 7E0 (2016) The rule_array parameter contents or a parameter value is not correct.

User action: Refer to the rule_array parameter described in this book
under the appropriate callable service for the correct value.

022 (034) 7E0 (2016) A rule array keyword combination is not valid.

023 (035) 7DC (2012) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this
book under the appropriate callable service for the correct value.

027 (039) 272C (10028),
2730 (10032),
2734 (10036),
2744 (10052),
2768 (10088),
278C (10124),
3E90 (16016),
2724 (10020)

A control vector violation occurred.

028 (040) BE0 (3040) The service code does not contain numerical character data.

029 (041) 808 (2056) The key_form parameter is neither IM nor OP. Most constants, these
included, can be supplied in lower or uppercase. Note that this parameter is
4 bytes long, so the value IM or OP is not valid. They must be padded on
the right with blanks.

User action: Review the value provided and change it to IM or OP, as
required.

02A (042)-
expiration date

BE0 (3040) The expiration date is not numeric (X'F0' through X'F9'). The parameter
must be character representations of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the
service that you called and change to the format and values required.

02B (043) 80C (2060) The key_length parameter passed to the key generate callable service
holds a value that is not valid.

User action: Review the value provided and change it as appropriate.

358 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

02C (044) The key record create callable service requires that the key created not
already exist in the CKDS. A key of the same label was found.

User action: Make sure the application specifies the correct label. If the
label is correct, contact your ICSF security administrator or system
programmer.

02D (045) An input character is not in the code table.

User action: Correct the code table or the source text.

02F (047) 83C (2108), 2754
(10068), 2758
(10072), 275C
(10076), 2AFC
(11004), 2B04
(11012), 2B08
(11016), 2B10
(11024)

A source key token is unusable because it contains data that is not valid or
undefined.

030 (048) 2714 (10004),
2B0C (11020)

One or more keys has a master key verification pattern that is not valid.

031 (049) 2738 (10040) Key identifiers contain a version number. The version number in a supplied
key identifier (internal or external) is inconsistent with one or more fields in
the key identifier, making the key identifier unusable.

User action: Use a token containing the required version number.

03D (061) 2720 (10016),
2740 (10048),
274C (10060)

The keyword supplied with the key_type parameter is not valid.

03E (062) 271C (10012) The source key was not found.

03F (063) 7F8 (2040) This check is based on the first byte in the key identifier parameter. The
key identifier provided is either an internal token, where an external or null
token was required; or an external or null token, where an internal token
was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a
key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you
have provided. Also check that your parameters are in the required
sequence.

040 (064) 2B18 (11032),
2B58 (11096)

The supplied private key can be used only for digital signature. Key
management services are disallowed.

User action: Supply a key with key management enabled.

041 (065) 7E8 (2024) The RSA public or private key specified a modulus length that is incorrect
for this service.

User action: Re-invoke the service with an RSA key with the proper
modulus length.

Appendix A. ICSF and TSS Return and Reason Codes 359

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

042 (066) 2B20 (11040) The recovered encryption block was not a valid PKCS-1.2 or zero-pad
format. (The format is verified according to the recovery method specified in
the rule-array.) If the recovery method specified was PKCS-1.2, refer to
PKCS-1.2 for the possible error in parsing the encryption block.

User action: Ensure that the parameters passed to CSNDSYI are correct.
Possible causes for this error are incorrect values for the RSA private key
or incorrect values in the RSA_enciphered_key parameter, which must be
formatted according to PKCS-1.2 or zero-pad rules when created.

043 (067) DES or RSA encryption failed.

044 (068) DES or RSA decryption failed.

048 (072) 2AF8 (11000),
2B14 (11028)

The value specified for length parameter for a key token, key, or text field is
not valid.

User action: Correct the appropriate length field parameter.

05A (090) Access is denied for this verb. The authorization level is either too low or is
not identical.

064 (100) BBC (3004) The PIN length is not valid.

065 (101) BC0 (3008) The PIN check length is not valid. It must be in the range from 4 to the PIN
length inclusive.

066 (102) BE0 (3040) The value of the decimalization table is not valid.

067 (103) BE0 (3040) The value of the validation data is not valid.

068 (104) BE0 (3040) The value of the customer-selected PIN is not valid, or the PIN length does
not match the value specified.

069 (105) BE0 (3040) The value of the transaction_security_parameter is not valid.

06A (106) BC8 (3016) The PIN block format keyword is not valid.

06B (107) BD0 (3024) The format control keyword is not valid.

06C (108) BC8 (3016) The value of the PAD data is not valid.

06D (109) The extraction method keyword is not valid.

06E (110) BE0 (3040) The value of the PAN data is not numeric character data.

074 (116) BBC (3004) The clear PIN value is not valid.

079 (121) The source_key_identifier or inbound_key_identifier you supplied in an
ANSI X9.17 service is not a valid ASCII hexadecimal string.

User action: Check that you specified a valid ASCII string for the
source_key_identifier or inbound_key_identifier parameter.

09A (154) 7F8 (2040) This check is based on the first byte in the key identifier parameter. The
key identifier provided is either an internal token, where an external or null
token was required; or an external or null token, where an internal token
was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a
key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you
have provided. Also check that your parameters are in the required
sequence.

360 z/OS V1R3.0 ICSF Application Programmer’s Guide

|||

|||

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

09B (155) The value that the generated_key_identifier parameter specifies is not
valid,or it is not consistent with the value that the key_form parameter
specifies.

09C (156) 2790 (10128) A keyword is not valid with the specified parameters.

09D (157) 7E0 (2016) The key-token type is not specified in the rule array.

0A0 (160) The key type and the key length are not consistent.

0A5 (165) 7F4 (2036) The contents of a chaining vector passed to a callable service are not valid.
If you called the MAC generation callable service, or the MDC generation
callable service with a MIDDLE or LAST segmenting rule, the count field
has a number that is not valid. If you called the MAC verification callable
service, then this will have been a MIDDLE or LAST segmenting rule.

User action: Check to ensure that the chaining vector is not modified by
your program. The chaining vector returned by ICSF should only be used to
process one message set, and not intermixed between alternating message
sets. This means that if you receive and process two or more independent
message streams, each should have its own chaining vector. Similarly,
each message stream should have its own key identifier.

If you use the same chaining vector and key identifier for alternating
message streams, you will not get the correct processing performed.

0B5 (181) This check is based on the first byte in the key identifier parameter. The
key identifier provided is either an internal token, where an external or null
token was required; or an external or null token, where an internal token
was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a
key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you
have provided. Also check that your parameters are in the required
sequence.

0B7 (183) 273C (10044) A cross-check of the control vector the key type implies has shown that it
does not correspond with the control vector present in the supplied internal
key identifier.

User action: Change either the key type or key identifier.

0B8 (184) An input pointer is null.

0CC (204) A memory allocation failed.

154 (340) One of the input control vectors has odd parity.

157 (343) Either the data block or the buffer for the block is too small.

159 (345) Insufficient storage space exists for the data in the data block buffer.

15A (346) The requested command is not valid in the current state of the
cryptographic hardware component.

176 (374) 7D4 (2004), 7E0
(2016)

Less data was supplied than expected or less data exists than was
requested.

181 (385) The cryptographic hardware component reported that the data passed as
part of the command is not valid for that command.

197 (407) BC8 (3016) A PIN block consistency check error occurred.

25D (605) The number of output bytes is greater than the number that is permitted.

Appendix A. ICSF and TSS Return and Reason Codes 361

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

2BF (703) A new master key value was found to be one of the weak DES keys.

2C0 (704) The new master key would have the same master key verification pattern
as the current master key.

2C1 (705) The same key-encrypting key was specified for both exporter keys.

2C2 (706) 7EC (2028) While deciphering ciphertext that had been created using a padding
technique, it was found that the last byte of the plaintext did not contain a
valid count of pad characters.

Note that all cryptographic processing has taken place, and the clear_text
parameter contains the deciphered text.

User action: The text_length parameter was not reduced. Therefore, it
contains the length of the base message, plus the length of the padding
bytes and the count byte. Review how the message was padded before it
was enciphered. The count byte that is not valid was created before the
message’s encipherment.

You may need to check whether the ciphertext was not created using a
padding scheme. Otherwise, check with the creator of the ciphertext on the
method used to create it. You could also look at the plaintext to review the
padding scheme used, if any.

2C3 (707) The master key registers are not in the state required for the requested
function.

2CA (714) 844 (2116) A reserved parameter was not a null pointer or an expected value.

2CB (715) 834 (2100) A non-zero value was specified for a field that must be zero.

2CF (719) 2B38 (11064) The RSA-OAEP block did not verify after the decompose. The block type is
incorrect (must be X'03').

User action: Recreate the RSA-OEAP block.

2D0 (720) 2B40 (11072) The RSA-OAEP block did not verify after the decompose. The random
number I is not correct (must be non-zero with the high-order bit equal to
zero).

User action: Recreate the RSA-OEAP block.

2D1 (721) 2B3C (11068) The RSA-OAEP block did not verify after the decompose. The verification
code is not correct (must be all zeros).

User action: Recreate the RSA-OEAP block.

2F8 (760) 2B48 (11080) The RSA public or private key specified a modulus length that is incorrect
for this service.

User action: Re-invoke the service with an RSA key with the proper
modulus length.

302 (770) 2B00 (11008) A reserved field in a parameter, probably a key identifier, has a value other
than zero.

User action: Key identifiers should not be changed by application programs
for other uses. Review any processing you are performing on key identifiers
and leave the reserved fields in them at zero.

30F (783) Return code 12,
reason code 2B0C
(11020)

The command is not permitted by Function-Control-Vector value.

362 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 94. TSS Reason Codes for Return Code 8 (8) (continued)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

401 (1025) Registered public key or retained private key name already exists.

405 (1029) There is an error in the Environment Identification data.

41A (1050) A KEK RSA-enciphered at this node (EID) cannot be imported at this same
node.

7DF (2015) An error occurred in the Domain Manager.

802 (2050) A UKPT keyword was specified, but there is an error in the PIN_profile key
serial number.

User action: Correct the PIN profile key serial number.

TSS Reason Codes for Return Code C (12)
Table 95 lists reason codes returned from TSS verbs that give return code C and
any corresponding ICSF reason codes.

Table 95. TSS Reason Codes for Return Code C (12)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

2FC (764) The PKA master key is not in a valid state.

User action: Contact your ICSF administrator.

TSS Reason Codes for Return Code 10 (16)
Table 96 lists reason codes returned from TSS verbs that give return code 10 and
any corresponding ICSF reason codes. These error codes will result in an ICSF
18F abend with reason code X'50'. The caller will get return code 16, reason code
4.

Table 96. TSS Reason Codes for Return Code 10 (16)

TSS Reason
Code Hex
(Decimal)

ICSF Reason
Code Hex
(Decimal) Description

150 (336) 4 (4) An error occurred in the cryptographic hardware component.

22C (556) 4 (4) The request parameter block failed consistency checking.

2C4 (708) 4 (4) Inconsistent data was returned from the cryptographic engine.

2C5 (709) 4 (4) Cryptographic engine internal error; could not access the master key data.

2C8 (712) 4 (4) An unexpected error occurred in the Master Key manager.

Appendix A. ICSF and TSS Return and Reason Codes 363

|||
|

|

364 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix B. Key Token Formats

For debugging purposes, this appendix provides the formats for DES internal,
external, and null key tokens and for PKA key tokens.

Format of the DES Internal Key Token
Table 97 shows the format for a DES internal key token.

Table 97. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.

3 Key is an ANSI key-encrypting key (AKEK).

4 AKEK is a double-length key (16 bytes).
Note: When bit 3 is on and bit 4 is off, AKEK is a single-length key (8 bytes).

5 AKEK is partially notarized.

6 Key is an ANSI partial key.

7 Export prohibited.

7 Reserved (X'00')

8–15 Master key verification pattern (MKVP)

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value
is encrypted under the master key.

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or
Part B of a triple-length operational key. The right half of the double-length key or Part B of the
triple-length key is encrypted under the master key.

32–39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40–47 X'0000000000000000' if a single-length key or the right half of the control vector for a
double-length operational key.

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key.

56-58 Reserved (X'000000')

59 bits 0 and 1 B'10' Indicates CDMF DATA or KEK.
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.
B'01' Indicates DES for a KEK.

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

© Copyright IBM Corp. 1997, 2002 365

Table 97. Internal Key Token Format (continued)

Bytes Description

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

Note: A key token stored in the CKDS will not have an MKVP or TVV. Before such
a key token is used, the MKVP is copied from the CKDS header record and
the TVV is calculated and placed in the token. See “Token Validation Value”
for more information.

Token Validation Value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and
stores the TVV in bytes 60-63 of the key token. When an application program
passes a key token to a callable service, ICSF checks the TVV. To generate the
TVV, ICSF performs a twos complement ADD operation (ignoring carries and
overflow) on the key token, operating on four bytes at a time, starting with bytes 0-3
and ending with bytes 56-59.

DES External Key Token
Table 98 on page 367 shows the format for a DES external key token.

366 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 98. Format of External Key Tokens

Bytes Description

0 X'02' (flag indicating an external key token)

1 Reserved (X'00')

2–3 Implementation-dependent bytes (X'0000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key is present.

1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

7 Reserved (X'00')

8–15 Reserved (X'0000000000000000')

16–23 Single-length key or left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under a transport key.

24–31 X'0000000000000000' if a single-length key or right half of a double-length key, or Part B of a
triple-length key. The right half of a double-length key or Part B of a triple-length key is encrypted
under a transport (key-encrypting key) for export or import.

32–39 Control vector (CV) for single-length key or left half of CV for double-length key

40–47 X'0000000000000000' if single-length key or right half of CV for double-length key

48–55 X'0000000000000000' if a single-length key, double-length key, or Part C of a triple-length key.

56–58 Reserved (X'000000')

59 bits 0 and 1 B'00'

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4–7 B'0000'

60-63 Token validation value (see “Token Validation Value” on page 366 for a description).

DES Null Key Token
Table 99 on page 368 shows the format for a DES null key token.

Appendix B. Key Token Formats 367

Table 99. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted
key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

56–63 Reserved (set to binary zeros).

Format of the RSA Public Key Token
An RSA public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required RSA public key section, starting with the section identifier X'04'

Table 100 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 100. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 256-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 2.) 16+1

12+xxx yyy Modulus, n.

368 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format of the DSS Public Key Token
A DSS public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required DSS public key section, starting with the section identifier X'03'

Table 101 presents the format of a DSS public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 101. DSS Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+ppp+qqq+ggg+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, “ppp”.

008 002 Size of the q field in bytes, “qqq”.

010 002 Size of the g field in bytes, “ggg”.

012 002 Size of the y field in bytes, “yyy”.

014 ppp Prime modulus (large public modulus), p.

014 +ppp qqq Prime divisor (small public modulus), q. 2159<q<2160.

014 +ppp +qqq ggg Public key generator, g.

014 +ppp +qqq
+ggg

yyy Public key, y. y=gx mod(p); 1<y<p.

Format of RSA Private External Key Tokens
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'
v A required RSA private key section starting with one of the following section

identifiers:

– X'02' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 1024 bits for use with the
Cryptographic Coprocessor Feature or the PCI Cryptographic Coprocessor.

– X'08' which indicates an optimized Chinese Remainder Theorem form private
key section with modulus bit length of up to 2048 bits for use with the PCI
Cryptographic Coprocessor

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Appendix B. Key Token Formats 369

Table 102 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first (left, low-address, S/390 format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Table 102. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is either
in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent External Form”

v For 2048-bit Chinese Remainder Theorem form refer to “RSA Private Key Token, 2048-bit Chinese Remainder
Theorem External Form” on page 371

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 256-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

RSA Private Key Token, 1024-bit Modulus-Exponent External Form
This RSA private key token and the external X'02' token is supported on the
Cryptographic Coprocessor Feature and PCI Cryptographic Coprocessor.

Table 103. RSA Private Key Token, 1024-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

370 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 103. RSA Private Key Token, 1024-bit Modulus-Exponent External Format (continued)

Offset (Dec) Number of Bytes Description

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<2 1024.

RSA Private Key Token, 2048-bit Chinese Remainder Theorem External
Form

This RSA private key token is supported on the PCI Cryptographic Coprocessor.

Table 104. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

Appendix B. Key Token Formats 371

Table 104. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

028 001 Key format and security:
X'40' Unencrypted RSA private-key subsection identifier, Chinese

Remainder form.
X'42' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of eight
bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when the
key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 2512<n<22048.

372 z/OS V1R3.0 ICSF Application Programmer’s Guide

Format of the DSS Private External Key Token
A DSS private external key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1E'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'

Table 105 presents the format of a DSS private external key token. All length fields
are in binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 105. DSS Private External Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security:
X'00' Unencrypted DSS private key subsection identifier.
X'81' Encrypted DSS private key subsection identifier.

029 001 Padding, X'00'.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 Ignored; set to binary zero.

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L and L (the modulus
length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the next two fields are enciphered for key
confidentiality when the key security flag (offset 28) indicates the private
key is enciphered.

412 020 Secret DSS key, x; x is random. (See the preceding note.)

Appendix B. Key Token Formats 373

Table 105. DSS Private External Key Token (continued)

Offset (Dec) Number of Bytes Description

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p)
Note: p, q, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key. name

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Format of the RSA Private Internal Key Token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and
padded with zeros to the left.

Table 106. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

374 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 106. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for Cryptographic Coprocessor Feature” on page 376

v For 1024-bit X'06' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for PCI Cryptographic Coprocessor” on page 376

v For 2048-bit X'08' Chinese Remainder Theorem form refer to “RSA Private Key Token, 2048-bit Chinese
Remainder Theorem Internal Form” on page 378

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 256-byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

Appendix B. Key Token Formats 375

Table 106. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature
Table 107. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under a PKA master key—can be
under the Signature Master Key (SMK) or Key Management Master Key
(KMMK) depending on key use.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<2 1024.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
PCI Cryptographic Coprocessor
Table 108. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

376 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 108. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
and including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the Asymmetric Keys
Master Key using the ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<2 1024.

364 016 Asymmetric-Keys Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

Appendix B. Key Token Formats 377

RSA Private Key Token, 2048-bit Chinese Remainder Theorem Internal
Form

This RSA private key token is supported on the PCI Cryptographic Coprocessor.

Table 109. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ +ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'08' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Key derivation method:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Asymmetric-Keys Master Key hash pattern.

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

378 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 109. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of the
confounder at offset 124 to the end of the padding field is a multiple of
eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 2512<n<22048.

Format of the DSS Private Internal Key Token
A DSS private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'
v A required internal information section, starting with the eyecatcher 'PKTN'

Table 110 presents the format of a DSS private internal token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 110. DSS Private Internal Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

Appendix B. Key Token Formats 379

Table 110. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security: X'01' DSS private key.

029 001 Format of external key token:
X'10' Private key generated on an ICSF host.
X'11' External private key was specified in the clear.
X'12' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 The OPK encrypted under a PKA master key (Signature Master Key
(SMK)).

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L for 512≤L≤1024, and
L (the modulus length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the two that follow are enciphered under the OPK.

412 020 Secret DSS key, x. x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p);
Note: p, g, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

380 z/OS V1R3.0 ICSF Application Programmer’s Guide

Table 110. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

008 004 Address of token header.

012 002 Length of internal work area.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 016 Reserved.

PKA Null Key Token
Table 111 shows the format for a PKA null key token.

Table 111. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

Appendix B. Key Token Formats 381

382 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix C. Control Vectors and Changing Control Vectors
with the CVT Callable Service

This section contains a control vector table which displays the default value of the
control vector that is associated with each type of key. It also describes how to
change control vectors with the control vector translate callable service.

Control Vector Table

Note: The Control Vectors used in ICSF are exactly the same as documented in
CCA and the TSS manuals.

The master key enciphers all keys operational on your system. A transport key
enciphers keys that are distributed off your system. Before a master key or
transport key enciphers a key, ICSF exclusive ORs both halves of the master key or
transport key with a control vector. The same control vector is exclusive ORed to
the left and right half of a master key or transport key.

Also, if you are entering a key part, ICSF exclusive ORs each half of the key part
with a control vector before placing the key part into the CKDS.

Each type of key on ICSF (except the master key) has either one or two unique
control vectors associated with it. The control vector that ICSF exclusive ORs the
master key or transport key with depends on the type of key the master key or
transport key is enciphering. For double-length keys, a unique control vector exists
for each half of a specific key type. For example, there is a control vector for the left
half of an input PIN-encrypting key, and a control vector for the right half of an input
PIN-encrypting key.

If you are entering a key part into the CKDS, ICSF exclusive ORs the key part with
the unique control vector(s) associated with the key type. ICSF also enciphers the
key part with two master key variants for a key part. One master key variant
enciphers the left half of the key part, and another master key variant enciphers the
right half of the key part. ICSF creates the master key variants for a key part by
exclusive ORing the master key with the control vectors for key parts. These
procedures protect key separation.

Table 112 displays the default value of the control vector that is associated with
each type of key. Some key types do not have a default control vector. For keys
that are double-length, ICSF enciphers a unique control vector on each half. Control
vectors indicated with an ″*″ are supported by the Cryptographic Coprocessor
Feature.

Table 112. Default Control Vector Values

Key Type Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

*AKEK 00 00 00 00 00 00 00 00

CIPHER 00 03 71 00 03 00 00 00

CVARDEC 00 3F 42 00 03 00 00 00

CVARENC 00 3F 48 00 03 00 00 00

© Copyright IBM Corp. 1997, 2002 383

Table 112. Default Control Vector Values (continued)

Key Type Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

CVARPINE 00 3F 41 00 03 00 00 00

CVARXCVL 00 3F 44 00 03 00 00 00

CVARXCVR 00 3F 47 00 03 00 00 00

*DATA 00 00 00 00 00 00 00 00

DATAC 00 00 71 00 03 41 00 00 00 00 71 00 03 21 00 00

*DATAM generation key
(external)

00 00 4D 00 03 41 00 00 00 00 4D 00 03 21 00 00

*DATAM key (internal) 00 05 4D 00 03 00 00 00 00 05 4D 00 03 00 00 00

*DATAMV MAC verification
key (external)

00 00 44 00 03 41 00 00 00 00 44 00 03 21 00 00

*DATAMV MAC verification
key (internal)

00 05 44 00 03 00 00 00 00 05 44 00 03 00 00 00

*DATAXLAT 00 06 71 00 03 00 00 00

DECIPHER 00 03 50 00 03 00 00 00

DKYGENKY 00 71 44 00 03 41 00 00 00 71 44 00 03 21 00 00

ENCIPHER 00 03 60 00 03 00 00 00

*EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00

IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00

*IMP-PKA 00 42 05 00 03 41 00 00 00 42 05 00 03 21 00 00

*IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00

*IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

*MAC 00 05 4D 00 03 00 00 00

*MACVER 00 05 44 00 03 00 00 00

OKEYXLAT 00 41 42 00 03 41 00 00 00 41 42 00 03 21 00 00

*OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

*PINGEN 00 22 7E 00 03 41 00 00 00 22 7E 00 03 21 00 00

*PINVER 00 22 42 00 03 41 00 00 00 22 42 00 03 21 00 00

Note: The external control vectors for DATAC, DATAM MAC generation and
DATAMV MAC verification keys are also referred to as data compatibility
control vectors.

384 z/OS V1R3.0 ICSF Application Programmer’s Guide

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01000001 0EgksixP 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000001 0E00001P 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000010 0E00001P 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000010 0EgksixP 00000000 0000001P fff0K00P 00000000 00000000

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

.......PP .E.....P0P1PK..PPP

Control-Vector Base Bits

Most Significant Bit

E= XPORT-OK

P=Even Parity

EXPORTER

OKEYXLAT

IKEYXLAT

IMPORTER

Key-Encrypting Keys

K=KEY-PART

Common Bits

Anti-Variant Bits

Least Significant Bit

g=IMEX

k=OPEX

x=XLATE
i=IMPORT

s=IMIM
k=OPIM

g=IMEX

s=EXEX

i=EXPORT

x=XLATE

Key-Form

Figure 3. Control Vector Base Bit Map (Common Bits and Key-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 385

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 00000000 0Eedmv0P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E11000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E00110P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E00010P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E11000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E01000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E10000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00001010 0E..000P 00000000 00000011 fff0K00P 00000000 00000000

cccc0000 00000101 0E00110P 00000000 00000011 fff0K00P 00000000 00000000

cccc0000 00000101 0E00010P 00000000 00000011 fff0K00P 00000000 00000000

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

DATA

DATAC

DATAM

DATAMV

CIPHER

MACVER

SECMSG

MAC

ENCIPHER

DECIPHER

Data Operation Keys

Least Significant Bit

01 PIN encryption
10 Key encryption

0000 ANY
0001 ANSI X9.9
0010 CVV KEY-A
0011 CVV KEY-B

Key-Form

Figure 4. Control Vector Base Bit Map (Data Operation Keys)

386 z/OS V1R3.0 ICSF Application Programmer’s Guide

Figure 5. Control Vector Base Bit Map (PIN Processing Keys and Cryptographic Variable-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 387

Key Form Bits, ’fff’ - The key form bits, 40-42, and for a double-length key, bits
104-106, are designated ’fff’ in the preceding illustration. These bits can have these
values:

000 Single length key

010 Double length key, left half

001 Double length key. right half

The following values may exist in some CCA implementations:

110 Double-length key, left half, halves guaranteed unique

101 Double-length key, right half, halves guaranteed unique

Specifying a Control-Vector-Base Value
You can determine the value of a control vector by working through the following
series of questions:

1. Begin with a field of 64 bits (eight bytes) set to B'0'. The most significant bit is
referred to as bit 0. Define the key type and subtype (bits 8 to 14), as follows:

v The main key type bits (bits 8 to 11). Set bits 8 to 11 to one of the following
values:

Figure 6. Control Vector Base Bit Map (Key Generating Keys)

388 z/OS V1R3.0 ICSF Application Programmer’s Guide

Bits 8 to 11 Main Key Type

0000 Data operation keys

0010 PIN keys

0011 Cryptographic variable-encrypting keys

0100 Key-encrypting keys

0101 Key-generating keys

0111 Diversified key-generating keys

v The key subtype bits (bits 12 to 14). Set bits 12 to 14 to one of the following
values:

Note: For Diversified Key Generating Keys, the subtype field specifies the
hierarchical level of the DKYGENKY. If the subtype is non-zero, then
the DKYGENKY can only generate another DKYGENKY key with the
hierarchy level decremented by one. If the subtype is zero, the
DKYGENKY can only generate the final diversified key (a
non-DKYGENKY key) with the key type specified by the usage bits.

Bits 12 to 14 Key Subtype

Data Operation Keys

000 Compatibility key (DATA)

001 Confidentiality key (CIPHER, DECIPHER, or ENCIPHER)

010 MAC key (MAC or MACVER)

101 Secure messaging keys

Key-Encrypting Keys

000 Transport-sending keys (EXPORTER and OKEYXLAT)

001 Transport-receiving keys (IMPORTER and IKEYXLAT)

PIN Keys

001 PIN-generating key (PINGEN, PINVER)

000 Inbound PIN-block decrypting key (IPINENC)

010 Outbound PIN-block encrypting key (OPINENC)

Cryptographic Variable-Encrypting Keys

111 Cryptographic variable-encrypting key (CVAR....)

Diversified Key Generating Keys

000 DKY Subtype 0

001 DKY Subtype 1

010 DKY Subtype 2

011 DKY Subtype 3

100 DKY Subtype 4

101 DKY Subtype 5

110 DKY Subtype 6

111 DKY Subtype 7

2. For key-encrypting keys, set the following bits:

v The key-generating usage bits (gks, bits 18 to 20). Set the gks bits to B'111'
to indicate that the Key Generate callable service can use the associated

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 389

key-encrypting key to encipher generated keys when the Key Generate
callable service is generating various key-pair key-form combinations (see
the Key-Encrypting Keys section of Figure 3). Without any of the gks bits set
to 1, the Key Generate callable service cannot use the associated
key-encrypting key. The Key Token Build callable service can set the gks
bits to 1 when you supply the OPIM, IMEX, IMIM, OPEX, and EXEX
keywords.

v The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If the
‘i’ bit is set to 1, the associated key-encrypting key can be used in the Data
Key Import, Key Import, Data Key Export, and Key Export callable services.
If the ‘x’ bit is set to 1, the associated key-encrypting key can be used in the
Key Translate callable service.

v The key-form bits (fff, bits 40 to 42). The key-form bits indicate how the key
was generated and how the control vector participates in
multiple-enciphering. To indicate that the parts can be the same value, set
these bits to B'010'. For information about the value of the key-form bits in
the right half of a control vector, see Step 8.

3. For MAC and MACVER keys, set the following bits:

v The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits 20
and 21 to B'11'. For a MAC-verify key, set bits 20 and 21 to B'01'.

v The key-form bits (fff, bits 40 to 42). For a single-length key, set the bits to
B'000'. For a double-length key, set the bits to B'010'.

4. For PINGEN and PINVER keys, set the following bits:

v The PIN calculation method bits (aaaa, bits 0 to 3). Set these bits to one of
the following values:

Bits 0 to 3 Calculation Method
Keyword

Description

0000 NO-SPEC A key with this control vector
can be used with any PIN
calculation method.

0001 IBM-PIN or IBM-PINO A key with this control vector
can be used only with the IBM
PIN or PIN Offset calculation
method.

0010 VISA-PVV A key with this control vector
can be used only with the
VISA-PVV calculation method.

0100 GBP-PIN or GBP-PINO A key with this control vector
can be used only with the
German Banking Pool PIN or
PIN Offset calculation method.

0011 INBK-PIN A key with this control vector
can be used only with the
Interbank PIN calculation
method.

0101 NL-PIN-1 A key with this control vector
can be used only with the
NL-PIN-1, Netherlands PIN
calculation method.

v The prohibit-offset bit (o, bit 37) to restrict operations to the PIN value. If set
to 1, this bit prevents operation with the IBM 3624 PIN Offset calculation
method and the IBM German Bank Pool PIN Offset calculation method.

390 z/OS V1R3.0 ICSF Application Programmer’s Guide

5. For PINGEN, IPINENC, and OPINENC keys, set bits 18 to 22 to indicate
whether the key can be used with the following callable services

Service Allowed Bit Name Bit

Clear PIN Generate CPINGEN 18

Encrypted PIN Generate
Alternate

EPINGENA 19

Encrypted PIN Generate EPINGEN 20 for PINGEN

19 for OPINENC

Clear PIN Generate Alternate CPINGENA 21 for PINGEN

20 for IPINENC

Encrypted Pin Verify EPINVER 19

Clear PIN Encrypt CPINENC 18

6. For the IPINENC (inbound) and OPINENC (outbound) PIN-block ciphering
keys, do the following:

v Set the TRANSLAT bit (t, bit 21) to 1 to permit the key to be used in the PIN
Translate callable service. The Control Vector Generate callable service can
set the TRANSLAT bit to 1 when you supply the TRANSLAT keyword.

v Set the REFORMAT bit (r, bit 22) to 1 to permit the key to be used in the
PIN Translate callable service. The Control Vector Generate callable service
can set the REFORMAT bit and the TRANSLAT bit to 1 when you supply
the REFORMAT keyword.

7. For the cryptographic variable-encrypting keys (bits 18 to 22), set the
variable-type bits (bits 18 to 22) to one of the following values:

Bits 18 to 22 Generic Key Type Description

00000 CVARPINE Used in the Encrypted PIN
Generate Alternate service to
encrypt a clear PIN.

00010 CVARXCVL Used in the Control Vector
Translate callable service to
decrypt the left mask array.

00011 CVARXCVR Used in the Control Vector
Translate callable service to
decrypt the right mask array.

00100 CVARENC Used in the Cryptographic
Variable Encipher callable
service to encrypt an
unformatted PIN.

8. For key-generating keys, set the following bits:

v For KEYGENKY, set bit 18 for UKPT usage and bit 19 for CLR8-ENC
usage.

v For DKYGENKY, bit 18 is reserved and must be zero.

v Set bit 19 to 1 if the key will be used in the diverisifed key generate service
to generate a diversified key. Usage bits 18-22 for the DKYGENKY key type
are defined as follows. They will be encoded as the final key type that the
DKYGENKY key generates.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 391

|
|

|

Bits 19 to 22 Keyword Usage

0001 DDATA DATA, DATAC, single or double
length

0010 DMAC MAC, DATAM

0011 DMV MACVER, DATAMV

0100 DIMP IMPORTER, IKEYXLAT

0101 DEXP EXPORTER, OKEYXLAT

0110 DPVR PINVER

1000 DMKEY Secure message key for
encrypting keys

1001 DMPIN Secure message key for
encrypting PINs

1111 DALL All key types may be generated
except DKYGENKY and
KEYGENKY keys. Usage of the
DALL keyword is controlled by a
separate access control point.

9. For secure messaging keys, set the following bits:

v Set bit 18 to 1 if the key will be used in the secure messaging for PINs
service. Set bit 19 to 1 if the key will be used in the secure messaging for
keys service.

10. For all keys, set the following bits:

v The export bit (E, bit 17). If set to 0, the export bit prevents a key from
being exported. By setting this bit to 0, you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem. Once this bit is set to 0, it cannot be set to 1 by any service
other than Control Vector Translate. The Prohibit Export callable service can
reset the export bit.

v The key-part bit (K, bit 44). Set the key-part bit to 1 in a control vector
associated with a key part. When the final key part is combined with
previously accumulated key parts, the key-part bit in the control vector for
the final key part is set to 0. The Control Vector Generate callable service
can set the key-part bit to 1 when you supply the KEY-PART keyword.

v The anti-variant bits (bit 30 and bit 38). Set bit 30 to 0 and bit 38 to 1. Many
cryptographic systems have implemented a system of variants where a 7-bit
value is exclusive-ORed with each 7-bit group of a key-encrypting key
before enciphering the target key. By setting bits 30 and 38 to opposite
values, control vectors do not produce patterns that can occur in
variant-based systems.

v Control vector bits 64 to 127. If bits 40 to 42 are B'000' (single-length key),
set bits 64 to 127 to 0. Otherwise, copy bits 0 to 63 into bits 64 to 127 and
set bits 105 and 106 to B'01'.

v Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These bits
contain the parity bits (P) of the control vector. Set the parity bit of each byte
so the number of zero-value bits in the byte is an even number.

v For secure messaging keys, usage bit 18 on will enable the encryption of
keys in a secure message and usage bit 19 on will enable the encryption of
PINs in a secure message.

392 z/OS V1R3.0 ICSF Application Programmer’s Guide

Changing Control Vectors with the Control Vector Translate Callable
Service

Do the following when using the Control Vector Translate callable service:

v Provide the control information for testing the control vectors of the source,
target, and key-encrypting keys to ensure that only sanctioned changes can be
performed

v Select the key-half processing mode.

Providing the Control Information for Testing the Control Vectors
To minimize your security exposure, the Control Vector Translate callable service
requires control information (mask array information) to limit the range of allowable
control vector changes. To ensure that this service is used only for authorized
purposes, the source-key control vector, target-key control vector, and
key-encrypting key (KEK) control vector must pass specific tests. The tests on the
control vectors are performed within the secured cryptographic engine.

The tests consist of evaluating four logic expressions, the results of which must be
a string of binary zeros. The expressions operate bitwise on information that is
contained in the mask arrays and in the portions of the control vectors associated
with the key or key-half that is being processed. If any of the expression evaluations
do not result in all zero bits, the callable service is ended with a control vector
violation return and reason code (8/39). See Figure 7. Only the 56 bit positions that
are associated with a key value are evaluated. The low-order bit that is associated
with key parity in each key byte is not evaluated.

Mask Array Preparation
A mask array consists of seven 8-byte elements: A1, B1, A2, B2, A3, B3, and B4. You
choose the values of the array elements such that each of the following four
expressions evaluates to a string of binary zeros. (See Figure 7 on page 395.) Set
the A bits to the value that you require for the corresponding control vector bits. In
expressions 1 through 3, set the B bits to select the control vector bits to be
evaluated. In expression 4, set the B bits to select the source and target control
vector bits to be evaluated. Also, use the following control vector information:

C1 is the control vector associated with the left half of the KEK.

C2 is the control vector associated with the source key, or selected source-key
half/halves.

C3 is the control vector associated with the target key or selected target-key
half/halves.

1. (C1 exclusive-OR A1) logical-AND B1

This expression tests whether the KEK used to encipher the key meets your
criteria for the desired translation.

2. (C2 exclusive-OR A2) logical-AND B2

This expression tests whether the control vector associated with the source key
meets your criteria for the desired translation.

3. (C3 exclusive-OR A3) logical-AND B3

This expression tests whether the control vector associated with the target key
meets your criteria for the desired translation.

4. (C2 exclusive-OR C3) logical-AND B4

This expression tests whether the control vectors associated with the source
key and the target key meet your criteria for the desired translation.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 393

Encipher two copies of the mask array, each under a different cryptographic-
variable key (key type CVARENC). To encipher each copy of the mask array, use
the Cryptographic Variable Encipher callable service. Use two different keys so that
the enciphered-array copies are unique values. When using the Control Vector
Translate callable service, the mask_array_left parameter and the mask_array_right
parameter identify the enciphered mask arrays. The array_key_left parameter and
the array_key_right parameter identify the internal keys for deciphering the mask
arrays. The array_key_left key must have a key type of CVARXCVL and the
array_key_right key must have a key type of CVARXCVR. The cryptographic
process deciphers the arrays and compares the results; for the service to continue,
the deciphered arrays must be equal. If the results are not equal, the service
returns the return and reason code for data that is not valid (8/385).

Use the Key Generate callable service to create the key pairs CVARENC-
CVARXCVL and CVARENC-CVARXCVR. Each key in the key pair must be
generated for a different node. The CVARENC keys are generated for, or imported
into, the node where the mask array will be enciphered. After enciphering the mask
array, you should destroy the enciphering key. The CVARXCVL and CVARXCVR
keys are generated for, or imported into, the node where the Control Vector
Translate callable service will be performed.

If using the BOTH keyword to process both halves of a double-length key,
remember that bits 41, 42, 104, and 105 are different in the left and right halves of
the CCA control vector and must be ignored in your mask-array tests (that is, make
the corresponding B2 and/or B3 bits equal to zero).

When the control vectors pass the masking tests, the verb does the following:

v Deciphers the source key. In the decipher process, the service uses a key that is
formed by the exclusive-OR of the KEK and the control vector in the key token
variable the source_key_token parameter identifies.

v Enciphers the deciphered source key. In the encipher process, the service uses a
key that is formed by the exclusive-OR of the KEK and the control vector in the
key token variable the target_key_token parameter identifies.

v Places the enciphered key in the key field in the key token variable the
target_key_token parameter identifies.

394 z/OS V1R3.0 ICSF Application Programmer’s Guide

Selecting the Key-Half Processing Mode
Use the Control Vector Translate callable service to change a control vector
associated with a key. Rule-array keywords determine which key halves are
processed in the call, as shown in Figure 8 on page 396.

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 1 1 1 1 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 0 1 1 0 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 0 0 0 0 1 1 0 …

0 0 0 0 … 1 1 1 1 …

Control Vector
Under Test

For expression
1: KEK CV
2: Source CV
3: Target CV

A_Values

Intermediate
Result

B_Values

Final Result

For Expression
4: Source CV

Target CV

Intermediate
Result

B_Values

Final Result

Exclusive-OR

Exclusive-OR

Logical-AND

Logical-AND

Set Tested Positions
to the Value that
the Control Vector
Must Match

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
Bit Position is 1

Source Control Vector

Target Control Vector

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
bit Position is 1

Figure 7. Control Vector Translate Callable Service Mask_Array Processing

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 395

Keyword Meaning

SINGLE This keyword causes the control vector of the left half of the source
key to be changed. The updated key half is placed into the left half
of the target key in the target key token. The right half of the target
key is unchanged.

The SINGLE keyword is useful when processing a single-length
key, or when first processing the left half of a double-length key (to
be followed by processing the right half).

RIGHT This keyword causes the control vector of the right half of the
source key to be changed. The updated key half is placed into the
right half of the target key of the target key token. The left half of
the source key is copied unchanged into the left half of the target
key in the target key token.

BOTH This keyword causes the control vector of both halves of the source
key to be changed. The updated key is placed into the target key in
the target key token.

A single set of control information must permit the control vector
changes applied to each key half. Normally, control vector bit
positions 41, 42, 105, and 106 are different for each key half.
Therefore, set bits 41 and 42 to B'00' in mask array elements B1,
B2, and B3.

You can verify that the source and target key tokens have control
vectors with matching bits in bit positions 40-42 and 104-106, the
“form field” bits. Ensure that bits 40-42 of mask array B4 are set to
B'111'.

LEFT This keyword enables you to supply a single-length key and obtain
a double-length key. The source key token must contain:
v The KEK-enciphered single-length key
v The control vector for the single-length key (often this is a null

value)
v A control vector, stored in the source token where the right-half

control vector is normally stored, used in decrypting the
single-length source key when the key is being processed for the
target right half of the key.

The service first processes the source and target tokens as with the
SINGLE keyword. Then the source token is processed using the

CHANGE-CV CHANGE-CV

LEFT RIGHTLEFT RIGHT

LEFT RIGHT LEFT RIGHT LEFT RIGHT

LEFT RIGHT

CHANGE-CV

Keyword SINGLE Keyword RIGHT Keyword BOTH

Source Key

Process

Target Key

Copy

(Unchanged)

CHANGE-CV

Figure 8. Control Vector Translate Callable Service. In this figure, CHANGE-CV means the requested control vector
translation change; LEFT and RIGHT mean the left and right halves of a key and its control vector.

396 z/OS V1R3.0 ICSF Application Programmer’s Guide

single-length enciphered key and the source token right-half control
vector to obtain the actual key value. The key value is then
enciphered using the KEK and the control vector in the target token
for the right-half of the key.

This approach is frequently of use when you must obtain a
double-length CCA key from a system that only supports a
single-length key, for example when processing PIN keys or
key-encrypting keys received from non-CCA systems.

To prevent the service from ensuring that each key byte has odd parity, you can
specify the NOADJUST keyword. If you do not specify the NOADJUST keyword, or
if you specify the ADJUST keyword, the service ensures that each byte of the
target key has odd parity.

When the Target Key-Token CV Is Null
When you use any of the LEFT, BOTH, or RIGHT keywords, and when the control
vector in the target key token is null (all B'0'), then bit 0 in byte 59 will be set to B'1'
to indicate that this is a double-length DATA key.

Control Vector Translate Example
As an example, consider the case of receiving a single-length PIN-block encrypting
key from a non-CCA system. Often such a key will be encrypted by an unmodified
transport key (no control vector or variant is used). In a CCA system, an inbound
PIN encrypting key is double-length.

First use the Key Token Build callable service to insert the single-length key value
into the left-half key-space in a key token. Specify USE-CV as a key type and a
control vector value set to 16 bytes of X'00'. Also specify EXTERNAL, KEY, and CV
keywords in the rule array. This key token will be the source key key-token.

Second, the target key token can also be created using the Key Token Build
callable service. Specify a key type of IPINENC and the NO-EXPORT rule array
keyword.

Then call the Control Vector Translate callable service and specify a rule-array
keyword of LEFT. The mask arrays can be constructed as follows:

v A1 is set to the value of the KEK’s control vector, most likely the value of an
IMPORTER key, perhaps with the NO-EXPORT bit set. B1 is set to eight bytes of
X'FF' so that all bits of the KEK’s control vector will be tested.

v A2 is set to eight bytes of X'00', the (null) value of the source key control vector.
B2 is set to eight bytes of X'FF' so that all bits of the source-key “control vector”
will be tested.

v A3 is set to the value of the target key’s left-half control vector. B3 is set to
X'FFFF FFFF FF9F FFFF'. This will cause all bits of the control vector to be
tested except for the two (“fff”) bits used to distinguish between the left-half and
right-half target-key control vector.

v B4 is set to eight bytes of X'00' so that no comparison is made between the
source and target control vectors.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 397

398 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix D. Coding Examples

This appendix provides sample routines using the ICSF callable services for the
following languages:
v C
v COBOL
v Assembler
v PL/1

The COBOL and Assembler H examples that follow use the key generate, encipher,
and decipher callable services to determine whether the deciphered text matches
the starting text.

C
/*---*
* Example using C: *
* Invokes CSNBKGN (key generate), CSNBENC (DES encipher) and *
* CSNBDEC (DES decipher) *
---/
#include <stdio.h>
#include "csfhdrs.h"

/*---*
* Prototypes for functions in this example *
---/

/*---*
* Utility for printing hex strings *
---/
void printHex(unsigned char *, unsigned int);

/***/
/* Main Function */
/***/
int main(void) {

/*---*
* Constant inputs to ICSF services *
---/
static int textLen = 24;
static unsigned char clearText[24]="ABCDEFGHIJKLMN0987654321";
static unsigned char cipherProcessRule[8]="CUSP ";
static unsigned char keyForm[4]="OP ";
static unsigned char keyLength[8]="SINGLE ";
static unsigned char dataKeyType[8]="DATA ";
static unsigned char nullKeyType[8]=" ";
static unsigned char ICV[8]={0};
static unsigned char pad[1]={0};
static int exitDataLength = 0;
static unsigned char exitData[4]={0};
static int ruleArrayCount = 1;

/*---*
* Variable inputs/outputs for ICSF services *
---/
unsigned char cipherText[24]={0};
unsigned char compareText[24]={0};
unsigned char dataKeyId[64]={0};
unsigned char nullKeyId[64]={0};
unsigned char dummyKEKKeyId1[64]={0};
unsigned char dummyKEKKeyId2[64]={0};
int returnCode = 0;

© Copyright IBM Corp. 1997, 2002 399

int reasonCode = 0;
unsigned char OCV[18]={0};

/*---*
* Begin executable code *
---/
do {

/*---*
* Call key generate *
---/
if ((returnCode = CSNBKGN(&returnCode,

&reasonCode,
&exitDataLength,
exitData,
keyForm,
&keyLength,
dataKeyType,
nullKeyType,
dummyKEKKeyId1,
dummyKEKKeyId2,
dataKeyId,
nullKeyId)) != 0) {

printf("\nKey Generate failed:\;n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
break;
}

/*---*
* Call encipher *
---/
printf("\nClear Text\n");
printHex(clearText,sizeof(clearText));

if ((returnCode = CSNBENC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
clearText,
ICV,
&ruleArrayCount,
cipherProcessRule,
pad,
OCV,
cipherText)) != 0) {

printf("\nReturn from Encipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* Call decipher *
---/
printf("\nCipher Text\n");
printHex(cipherText,sizeof(cipherText));

if ((returnCode = CSNBDEC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
cipherText,
ICV,

400 z/OS V1R3.0 ICSF Application Programmer’s Guide

&ruleArrayCount,
cipherProcessRule,
OCV,
compareText)) != 0) {

printf("\nReturn from Decipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* End *
---/
printf("\nClear Text after decipher\n");
printHex(compareText,sizeof(compareText));

} while(0);

return returnCode;

} /* end main */

void printHex (unsigned char * text, unsigned int len)
/*--*
* Prints a string as hex characters *
--/

{
unsigned int i;

for (i = 0; i < len; ++i)
if (((i & 7) == 7) ││ (i == (len - 1)))

printf (" %02x\n", text&[i]);
else

printf (" %02x", text[i]);
printf ("\n");

} /* end printHex */

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOLXMP.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.
77 INPUT-TEXT PIC X(24)

VALUE ’ABCDEFGHIJKLMN0987654321’.
77 OUTPUT-TEXT PIC X(24)

VALUE LOW-VALUES.
77 COMPARE-TEXT PIC X(24)

VALUE LOW-VALUES.
77 CIPHER-PROCESSING-RULE PIC X(08)

VALUE ’CUSP ’.
77 KEY-FORM PIC X(08)

VALUE ’OP ’.
77 KEY-LENGTH PIC X(08)

Appendix D. Coding Examples 401

VALUE ’SINGLE ’.
77 KEY-TYPE-1 PIC X(08)

VALUE ’DATA ’.
77 KEY-TYPE-2 PIC X(08)

VALUE ’ ’.
77 ICV PIC X(08)

VALUE LOW-VALUES.
77 PAD PIC X(01)

VALUE LOW-VALUES.
************* DEFINE SAPI INPUT/OUTPUT PARAMETERS ************
01 SAPI-REC.

05 RETURN-CODE-S PIC 9(08) COMP.
05 REASON-CODE-S PIC 9(08) COMP.
05 EXIT-DATA-LENGTH-S PIC 9(08) COMP.
05 EXIT-DATA-S PIC X(04).
05 KEK-KEY-ID-1-S PIC X(64)

VALUE LOW-VALUES.
05 KEK-KEY-ID-2-S PIC X(64)

VALUE LOW-VALUES.
05 DATA-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 NULL-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 KEY-FORM-S PIC X(08).
05 KEY-LENGTH-S PIC X(08).
05 DATA-KEY-TYPE-S PIC X(08).
05 NULL-KEY-TYPE-S PIC X(08).
05 TEXT-LENGTH-S PIC 9(08) COMP.
05 TEXT-S PIC X(24).
05 ICV-S PIC X(08).
05 PAD-S PIC X(01).
05 CPHR-TEXT-S PIC X(24).
05 COMP-TEXT-S PIC X(24).
05 RULE-ARRAY-COUNT-S PIC 9(08) COMP.
05 RULE-ARRAY-S.

10 RULE-ARRAY PIC X(08).
05 CHAINING-VECTOR-S PIC X(18).

PROCEDURE DIVISION.

MAIN-RTN.
************* CALL KEY GENERATE ***************************

MOVE 0 TO EXIT-DATA-LENGTH-S.
MOVE KEY-FORM TO KEY-FORM-S.
MOVE KEY-LENGTH TO KEY-LENGTH-S.
MOVE KEY-TYPE-1 TO DATA-KEY-TYPE-S.
MOVE KEY-TYPE-2 TO NULL-KEY-TYPE-S.
CALL ’CSFKGN’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
KEY-FORM-S
KEY-LENGTH-S
DATA-KEY-TYPE-S
NULL-KEY-TYPE-S
KEK-KEY-ID-1-S
KEK-KEY-ID-2-S
DATA-KEY-ID-S
NULL-KEY-ID-S.

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** KEY-GENERATE ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
MOVE 24 TO TEXT-LENGTH-S
MOVE INPUT-TEXT TO TEXT-S

402 z/OS V1R3.0 ICSF Application Programmer’s Guide

MOVE 1 TO RULE-ARRAY-COUNT-S
MOVE CIPHER-PROCESSING-RULE TO RULE-ARRAY-S
MOVE LOW-VALUES TO CHAINING-VECTOR-S
MOVE ICV TO ICV-S.
MOVE PAD TO PAD-S.

************* CALL ENCIPHER ************************************
CALL ’CSFENC’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
PAD-S
CHAINING-VECTOR-S
CPHR-TEXT-S

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** ENCIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
************* CALL DECIPHER ************************************

CALL ’CSFDEC’ USING RETURN-CODE-S
REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
CPHR-TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
CHAINING-VECTOR-S
COMP-TEXT-S

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** DECIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
IF COMP-TEXT-S = TEXT-S THEN

DISPLAY ’*** DECIPHERED TEXT = PLAIN TEXT ***’
ELSE

DISPLAY ’*** DECIPHERED TEXT ê= PLAIN TEXT ***’.
DISPLAY ’*** TEST PROGRAM ENDED ***’
STOP RUN.

Assembler H
TITLE ’SAMPLE ENCIPHER/DECIPHER S/370 PROGRAM.’

===
* SYSTEM/370 ASSEMBLER H EXAMPLE *
* *
===

SPACE
SAMPLE START 0

DS 0H
STM 14,12,12(13) SAVE REGISTERS
BALR 12,0 USE R12 AS BASE REGISTER
USING *,12 PROVIDE SAVE AREA FOR SUBROUTINE
LA 14,SAVE PERFORM SAVE AREA CHAINING
ST 13,4(14) "
ST 14,8(13) "

Appendix D. Coding Examples 403

LR 13,14 "
*

CALL CSFKGN,(RETCD, *
RESCD, *
EXDATAL, *
EXDATA, *
KEY_FORM, *
KEY_LEN, *
KEYTYP1, *
KEYTYP2, *
KEK_ID1, *
KEK_ID2, *
DATA_ID, *
NULL_ID)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
* CALL ENCIPHER WITH THE KEY JUST GENERATED
* OPERATIONAL FORM
*

MVC RULEAC,=F’1’ SET RULE ARRAY COUNT
MVC RULEA,=CL8’CUSP ’ BUILD RULE ARRAY
CALL CSFENC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
TEXT, *
ICV, *
RULEAC, *
RULEA, *
PAD_CHAR, *
OCV, *
CIPHER_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CALL CSFDEC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
CIPHER_TEXT, *
ICV, *
RULEAC, *
RULEA, *
OCV, *
NEW_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
COMPARE EQU * COMPARE START AND END TEXT

CLC TEXT,NEW_TEXT
BE GOODENC
WTO ’DECIPHERED TEXT DOES NOT MATCH STARTING TEXT’
B BACK

GOODENC WTO ’DECIPHERED TEXT MATCHES STARTING TEXT’
*
*

WTO ’TEST PROGRAM TERMINATING’

404 z/OS V1R3.0 ICSF Application Programmer’s Guide

B RETURN
*
*--
* CONVERT RETURN/REASON CODES FROM BINARY TO EBCDIC
*--
BACK DS 0F OUTPUT RETURN & REASON CODE

L 5,RETCD LOAD RETURN CODE
L 6,RESCD LOAD REASON CODE
CVD 5,BCD1 CONVERT TO PACK-DECIMAL
CVD 6,BCD2
UNPK ORETCD,BCD1 CONVERT TO EBCDIC
UNPK ORESCD,BCD2
OI ORETCD+7,X’F0’ CORRECT LAST DIGIT
OI ORESCD+7,X’F0’

*
MVC ERROUT+21(4),ORETCD
MVC ERROUT+41(4),ORESCD

ERROUT WTO ’ERROR CODE = , REASON CODE = ’
RETURN EQU *

L 13,4(13) SAVE AREA RESTORATION
MVC 16(4,13),RETCD SAVE RETURN CODE
LM 14,12,12(13)
BR 14 RETURN TO CALLER

*
BCD1 DS D CONVERT TO BCD TEMP AREA
BCD2 DS D CONVERT TO BCD TEMP AREA
ORETCD DS CL8’0’ OUTPUT RETURN CODE
ORESCD DS CL8’0’ OUTPUT REASON CODE
*
KEY_FORM DC CL8’OP ’ KEY FORM
KEY_LEN DC CL8’SINGLE ’ KEY LENGTH
KEYTYP1 DC CL8’DATA ’ KEY TYPE 1
KEYTYP2 DC CL8’ ’ KEY TYPE 2
TEXT DC C’ABCDEFGHIJKLMNOPQRSTUV0987654321’
TEXTL DC F’32’ TEXT LENGTH
CIPHER_TEXT DC CL32’ ’
NEW_TEXT DC CL32’ ’
DATA_ID DC XL64’00’ DATA KEY TOKEN
NULL_ID DC XL64’00’ NULL KEY TOKEN - UNFILLED
KEK_ID1 DC XL64’00’ KEK1 KEY TOKEN
KEK_ID2 DC XL64’00’ KEK2 KEY TOKEN
RETCD DS F’0’ RETURN CODE
RESCD DS F’0’ REASON CODE
EXDATAL DC F’0’ EXIT DATA LENGTH
EXDATA DS 0C EXIT DATA
RULEA DS 1CL8 RULE ARRAY
RULEAC DS F’0’ RULE ARRAY COUNT
ICV DC XL8’00’ INITIAL CHAINING VECTOR
OCV DC XL18’00’ OUTPUT CHAINING VECTOR
PAD_CHAR DC F’0’ PAD CHARACTER
SAVE DS 18F SAVE REGISTER AREA

END SAMPLE

PL/1
/**/
/* */
/* Sample program to call the one-way hash service to generate */
/* the SHA-1 hash of the input text and call digital signature */
/* generate with an RSA key using the ISO 9796 text formatting. The */
/* RSA key token is built from supplied data and imported for the */
/* signature generate service to use. */
/* */
/* INPUT: TEXT Message digest to be signed */
/* */
/* OUTPUT: SIGNATURE_LENGTH Length of the signature in bytes */
/* Written to a dataset. */

Appendix D. Coding Examples 405

/* */
/* SIGNATURE Signature for hash. Written to a */
/* dataset. */
/* */
/**/
DSIGEXP:PROCEDURE(TEXT) OPTIONS(MAIN);

/* Declarations - Parameters */

DCL TEXT CHAR(64) VARYING;

/* Declarations - API parameters */

DCL CHAINING_VECTOR_LENGTH FIXED BINARY(31, 0) INIT(128);
DCL CHAINING_VECTOR CHAR(128);
DCL DUMMY_KEK CHAR(64);
DCL EXIT_DATA CHAR(4);
DCL EXIT_LEN FIXED BINARY(31, 0) INIT(0);

DCL HASH CHAR(20);
DCL HASH_LENGTH FIXED BINARY(31, 0) INIT(20);

DCL INTERNAL_PKA_TOKEN CHAR(1024);
DCL INTERNAL_PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL KEY_VALUE_STRUCTURE CHAR(139)
INIT((’02000040000300408000000000000000’X ||

’01AE28DA4606D885EB7E0340D6BAAC51’X ||
’991C0CD0EAE835AFD9CFF3CD7E7EA741’X ||
’41DADD24A6331BEDF41A6626522CCF15’X ||
’767D167D01A16F970100010252BDAD42’X ||
’52BDAD425A8C6045D41AFAF746BEBD5F’X ||
’085D574FCD9C07F0B38C2C45017C2A1A’X ||
’B919ED2551350A76606BFA6AF2F1609A’X ||
’00A0A48DD719A55E9CA801’X));

DCL KEY_VALUE_LENGTH FIXED BINARY(31, 0) INIT(139);

DCL OWH_TEXT CHAR(64);

DCL PKA_KEY_TOKEN CHAR(1024);
DCL PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL PRIVATE_NAME CHAR(64) INIT(’PL1.EXAMPLE.FOR.APG’);
DCL PRIVATE_NAME_LENGTH FIXED BINARY(31, 0) INIT(0);

DCL RETURN_CODE FIXED BINARY(31, 0) INIT(0);
DCL REASON_CODE FIXED BINARY(31, 0) INIT(0);

DCL RESERVED_FIELD_LENGTH FIXED BINARY(31, 0) INIT(0);
DCL RESERVED_FIELD CHAR(1);

DCL RULE_ARY_CNT_DSG FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKB FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKI FIXED BINARY(31, 0) INIT(0);
DCL RULE_ARY_CNT_OWH FIXED BINARY(31, 0) INIT(2);
DCL RULE_ARY_DSG CHAR(8) INIT(’ISO-9796’);
DCL RULE_ARY_PKB CHAR(8) INIT(’RSA-PRIV’);
DCL RULE_ARY_PKI CHAR(8);
DCL RULE_ARY_OWH CHAR(16) INIT(’SHA-1 ONLY ’);

DCL SIGNATURE_LENGTH FIXED BINARY(31, 0);
DCL SIGNATURE CHAR(128);
DCL SIG_BIT_LENGTH FIXED BINARY(31, 0);

DCL TEXT_LENGTH FIXED BINARY(31, 0);

/* Declarations - Files and entry points */

406 z/OS V1R3.0 ICSF Application Programmer’s Guide

DCL SYSPRINT FILE OUTPUT;
DCL SIGOUT FILE RECORD OUTPUT;

DCL CSNDPKB ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDPKI ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNBOWH ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDDSG ENTRY EXTERNAL OPTIONS(ASM, INTER);

/* Declarations - Internal variables */

DCL DSG_HEADER CHAR(32)
INIT(’* DIGITAL SIGNATURE GENERATION *’);

DCL FILE_OUT_LINE CHAR(128);
DCL OWH_HEADER CHAR(16)

INIT(’* ONE WAY HASH *’);
DCL PKB_HEADER CHAR(16)

INIT(’* PKA TOKEN BUILD *’);
DCL PKI_HEADER CHAR(16)

INIT(’* PKA TOKEN IMPORT *’);
DCL RC_STRING CHAR(14) INIT(’RETURN CODE = ’);
DCL RS_STRING CHAR(14) INIT(’REASON CODE = ’);
DCL SIG_STRING CHAR(12) INIT(’SIGNATURE = ’);
DCL SIG_LEN_STRING CHAR(26) INIT(’SIGNATURE LENGTH(BYTES) = ’);

/* Declarations - Built-in functions */

DCL (SUBSTR, LENGTH) BUILTIN;

/**/
/* Call one-way hash to get the SHA-1 hash of the text. */
/**/
TEXT_LENGTH = LENGTH(TEXT);
OWH_TEXT = SUBSTR(TEXT, 1, TEXT_LENGTH);

CALL CSNBOWH(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_OWH,
RULE_ARY_OWH,
TEXT_LENGTH,
OWH_TEXT,
CHAINING_VECTOR_LENGTH,
CHAINING_VECTOR,
HASH_LENGTH,
HASH);

PUT SKIP LIST(OWH_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

/**/
/* Create the PKA RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKB(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKB,
RULE_ARY_PKB,
KEY_VALUE_LENGTH,

Appendix D. Coding Examples 407

KEY_VALUE_STRUCTURE,
PRIVATE_NAME_LENGTH,
PRIVATE_NAME,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN);

PUT SKIP LIST(PKB_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;

/**/
/* Import the clear RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

INTERNAL_PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKI(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKI,
RULE_ARY_PKI,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN,
DUMMY_KEK,
INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN);

PUT SKIP LIST(PKI_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;
/**/
/* Call digital signature generate. */
/**/
IF RETURN_CODE = 0 THEN

DO;

SIGNATURE_LENGTH = 128;

CALL CSNDDSG(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_DSG,
RULE_ARY_DSG,
INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN,
HASH_LENGTH,
HASH,
SIGNATURE_LENGTH,
SIG_BIT_LENGTH,

408 z/OS V1R3.0 ICSF Application Programmer’s Guide

SIGNATURE);

PUT SKIP LIST(DSG_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

IF RETURN_CODE = 0 THEN
DO;

/**/
/* Write the signature and its length to the output file. */
/**/
FILE_OUT_LINE = SIG_LEN_STRING || SIGNATURE_LENGTH;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
FILE_OUT_LINE = SIG_STRING || SIGNATURE;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
END;

END;

END DSIGEXP;

Appendix D. Coding Examples 409

410 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix E. Using ICSF with BSAFE

ICSF works in conjunction with RSA Security, Inc.’s BSAFE toolkit (BSAFE 3.1 or
later). If you are currently using applications developed with BSAFE, you may want
to take advantage of the increased security and performance available with the
Cryptographic Coprocessor Feature and ICSF.

Through BSAFE 3.1 you can access the ICSF services to:

v Compute message digests or hashes

v Generate random numbers

v Encipher and decipher data using the DES algorithm

v Generate and verify RSA digital signatures

Some BSAFE Basics
BSAFE has many algorithm information types (called AIs). Many of the AIs can
perform several cryptographic functions. For this reason, you must specify the
algorithmic method (AM) to be used by supplying a chooser. If the cryptographic
function requires a key, you supply key information to the BSAFE application with a
key information (KI) type. For the most current information on the BSAFE user
interface and a complete description of algorithm information types, algorithm
methods, choosers, and key information types, refer to BSAFE User’s Manual and
BSAFE Library Reference Manual.

Computing Message Digests and Hashes
MD5 and SHA1 hashing are both available from ICSF via BSAFE. If your BSAFE
application uses the AM_MD5 or the AM_SHA algorithm methods, you can add a
couple of BSAFE function calls and the application will use ICSF and the
Cryptographic Coprocessor Feature instead of the BSAFE algorithm method.

The following list shows BSAFE AI types with choosers that may include AM_MD5:
v AI_MD5
v AI_MD5_BER
v AI_MD5WithDES_CBCPad
v AI_MD5WithDES_CBCPadBER
v AI_MD5WithRC2_CBCPad
v AI_MD5WithRC2_CBCPadBER
v AI_MD5WithRSAEncryption
v AI_MD5WithRSAEncryptionBER
v AI_MD5WithXOR
v AI_MD5WithXOR_BER

The following list shows BSAFE AI types with choosers that may include AM_SHA:
v AI_SHA1
v AI_SHA1_BER
v AI_SHA1WithDES_CBCPad
v AI_SHA1WithDES_CBCPadBER

Generating Random Numbers
If your BSAFE application uses the algorithm method AM_MD5_RANDOM, you can
add a chooser definition containing the algorithm method AM_HW_RANDOM (new

© Copyright IBM Corp. 1997, 2002 411

with BSAFE 3.1) and a couple of BSAFE function calls and your program can use
ICSF and the Cryptographic Coprocessor Feature to generate random numbers
instead of the BSAFE algorithm method.

BSAFE 3.1 provides a new algorithm information type, AI_HWRandom. You need to
set your random number generation object with AI_HWRandom, and initialize the
object with a chooser containing AM_HW_RANDOM, in order to use ICSF with the
Cryptographic Coprocessor Feature for generating random numbers. You do not,
however, have to make a B_RandomUpdate call, since the S/390 and IBM
Eserver zSeries cryptographic solution does not require a seed.

The only AI type with choosers that may include AM_HW_RANDOM is
AI_HWRandom.

Encrypting and Decrypting with DES
If your BSAFE application uses either the AM_DES_CBC_ENCRYPT or the
AM_DES_CBC_DECRYPT algorithm methods, you can add a chooser containing
the algorithm methods AM_TOKEN_DES_CBC_ENCRYPT and/or
AM_TOKEN_DES_CBC_DECRYPT (both new with BSAFE 3.1) and a couple of
BSAFE function calls and your program can use ICSF and the Cryptographic
Coprocessor Feature to encrypt and/or decrypt data using the DES algorithm.

For your encryption or decryption key, you can use either a clear key in the form of
a KI_8Byte or KI_DES8 or KI_Item (8 bytes long), or a CCA DES Key Token in the
form of a KI_TOKEN (64 bytes long). KI_TOKEN is a new key information type in
BSAFE 3.1.

The following list shows BSAFE AI types with choosers that may include either
AM_TOKEN_DES_CBC_ENCRYPT, AM_TOKEN_DES_CBC_DECRYPT, or both:
v AI_DES_CBC_BSAFE1
v AI_DES_CBC_IV8
v AI_DES_CBCPadBER
v AI_DES_CBCPadIV8
v AI_DES_CBCPadPEM
v AI_MD5WithDES_CBCPad
v AI_MD5WithDES_CBCPadBER
v AI_SHA1WithDES_CBCPad
v AI_SHA1WithDES_CBCPadBER

Generating and Verifying RSA Digital Signatures
You can use algorithm method AM_TOKEN_RSA_PRV_ENCRYPT with AM_MD5 or
AM_SHA to have ICSF and the Cryptographic Coprocessor Feature generate RSA
digital signatures. To verify the RSA digital signature using the S/390 or IBM
Eserver zSeries cryptographic solution, you can use
AM_TOKEN_RSA_PUB_DECRYPT (with AM_MD5 or AM_SHA). Your BSAFE
application must contain a couple of new BSAFE function calls to access the S/390
and IBM Eserver zSeries services. AM_TOKEN_RSA_PRV_ENCRYPT and
AM_TOKEN_RSA_PUB_DECRYPT are new in BSAFE 3.1. For more information,
see “Using the New Function Calls in Your BSAFE Application” on page 413.

For signature generation, you can use either a clear private key in the form of a
KI_PKCS_RSAPrivate or a CCA RSA private key token in the form of a KI_TOKEN.
For signature verification, you can use either a public RSA key in the form of a
KI_RSAPublic or a CCA RSA public key token in the form of a KI_TOKEN.

412 z/OS V1R3.0 ICSF Application Programmer’s Guide

KI_TOKEN is a new key information type in BSAFE. For more information about
KI_TOKEN, see “Using the BSAFE KI_TOKEN” on page 415.

The following list shows BSAFE AI types with choosers that may include
AM_TOKEN_RSA_PRV_ENCRYPT:
v AI_MD5WithRSAEncryption
v AI_MD5WithRSAEncryptionBER
v AI_SHA1WithRSAEncryption
v AI_SHA1WithRSAEncryptionBER

The following list shows BSAFE AI types with choosers that may include
AM_TOKEN_RSA_PUB_DECRYPT:
v AI_MD5WithRSAEncryption
v AI_SHA1WithRSAEncryption

Encrypting and Decrypting with RSA
You can use algorithm method AM_TOKEN_RSA_ENCRYPT to have ICSF encrypt
a symmetric key (or other string of 48 bytes or fewer). To decrypt the string using
ICSF, you can use AM_TOKEN_RSA_CRT_DECRYPT. You’ll need a couple of new
BSAFE function calls to access the S/390 and IBM Eserver zSeries services (see
“Using the New Function Calls in Your BSAFE Application”.

To encrypt a string, you can use either a public key in the form KI_RSAPublic or a
CCA RSA public key token in the form of a KI_TOKEN.

To decrypt a string, you can use either a private key in the form
KI_PKCS_RSAPrivate or a CCA RSA private key token in the form of a KI_TOKEN.

Using the New Function Calls in Your BSAFE Application
To have your BSAFE application access the ICSF, S/390, and IBM Eserver
zSeries Cryptographic Coprocessor Feature services, you need to add several new
elements to your program. These elements are explained with examples in the
steps that follow.

1. At the beginning of your program, declare one or more session choosers and
also the hardware table list. For information about choosers and the hardware
table list, see BSAFE User’s Manual.
/*---*
* SESSION_CHOOSER will replace OLD_CHOOSER. *
---/
B_ALGORITHM_METHOD **SESSION_CHOOSER = NULL_PTR;

/*---*
* CCA_VTABLE is a vector table of functions that will be *
* substituted for BSAFE equivalents. It is supplied by IBM *
* and will be loaded into your application when you invoke *
* QueryCrypto. *
---/
HW_TABLE_LIST CCA_VTABLE = (HW_TABLE_LIST)NULL_PTR;

2. Declare a tag list. The content of the tag list is supplied by BSAFE at the
B_CreateSessionChooser call, which is discussed in a later step.
unsigned char **taglist = (unsigned char **)NULL_PTR;

3. For random number generation, DES encryption or decryption or RSA
encryption or decryption, you need to define and declare an additional chooser

Appendix E. Using ICSF with BSAFE 413

wherever your current chooser is defined and declared. For instance, suppose
your application is doing an RSA encryption, and OLD_CHOOSER is defined as
follows:
/*--*
* OLD_CHOOSER is used for this application when ICSF and *
* the crypto hardware is not available. *
--/
B_ALGORITHM_METHOD *OLD_CHOOSER[] = {

&AM_SHA,
&AM_RSA_ENCRYT,
(B_ALGORITHM_METHOD *)NULL_PTR

};

/*--*
* ICSF_CHOOSER is a ’skeleton’ for SESSION_CHOOSER. *
* SESSION_CHOOSER will be used for this application if *
* ICSF and the crypto hardware are not available. *
--/
B_ALGORITHM_METHOD *ICSF_CHOOSER[] = {

&AM_SHA,
&AM_TOKEN_RSA_PUB_ENCRYPT,
(B_ALGORITHM_METHOD *)NULL_PTR

};

4. At the beginning of the main function in your application, add a call to the ICSF
QueryCrypto function followed by a conditional call to the BSAFE
B_CreateSessionChooser function.
/*---*
* Check for the existence of crypto hardware. If it’s there, *
* QueryCrypto will supply CCA_VTABLE *
---/
if ((status = QueryCrypto(CRYPTO_Q_DES_AND_RSA,&CCA_VTABLE)) == 0)
/*---*

* B_CreateSessionChooser will replace the *
* BSAFE software functions with their CCA *
* hardware equivalents. *
* *
* Note that the last three parameters are not *
* used with CCA *
---/

if ((status = B_CreateSessionChooser(ICSF_CHOOSER,
&SESSION_CHOOSER,
CCA_VTABLE,
(ITEM *)NULL_PTR,
(POINTER *)NULL_PTR,

&taglist)) != 0)
break;

5. Set up the conditions under which any alternate choosers are used to initialize
the appropriate algorithm object. For information about initializing algorithm
objects, see BSAFE User’s Manual.
/*---*
* Initialize the algorithm object with the appropriate *
* chooser. *
---/
if (SESSION_CHOOSER != NULL_PTR)

if ((status = B_xxxxxxInit
(xxxxxxObject,SESSION_CHOOSER,
(A_SURRENDER_CTX *)NULL_PTR)) != 0)

break;
else ;

else
if ((status = B_xxxxxxInit

414 z/OS V1R3.0 ICSF Application Programmer’s Guide

(xxxxxxObject,OLD_CHOOSER,
(A_SURRENDER_CTX *)NULL_PTR)) != 0)

break;
else ;

6. When your application no longer needs the session chooser, program a call to
the BSAFE B_FreeSessionChooser function.
if (SESSION_CHOOSER != NULL_PTR)

B_FreeSessionChooser(&SESSION_CHOOSER,&taglist);

Using the BSAFE KI_TOKEN
Those ICSF functions that require a key, like encipher and decipher, expect the key
in the form of a CCA token. If you already have a CCA token, perform the following
steps before you try to set your algorithm object. For information about how to
perform the following tasks, see BSAFE User’s Manual and BSAFE Library
Reference Manual.

1. Create a key object.

2. Declare a KEY_TOKEN_INFO and fill it in.

KEY_TOKEN_INFO is defined as follows in the BSAFE User’s Manual:
typedef struct {

ITEM manufacturerID;
ITEM internalKeyInfo;

} KEY_TOKEN_INFO;

The first ITEM is the address and length of one of the following three strings,
depending on the CCA key token type you are using:

v com.ibm.CCADES

v com.ibm.CCARSAPublic

v com.ibm.CCARSAPrivate

The second ITEM is the address and length of your CCA key token.

3. Set the key information (B_SetKeyInfo) into the key object using the item and a
key information type of KI_TOKEN as input.

If you don’t already have a CCA token, you can supply a clear key to the function
using one of the key information types mentioned in the section discussing the
function you are using. BSAFE will convert the key to a CCA token. If you supply a
clear BSAFE KI type to one of the ICSF functions, and the function is performed
successfully, you can retrieve the key as a CCA token by invoking B_GetKeyInfo
with KI_TOKEN as the key information type. A KEY_TOKEN_INFO struct is
returned.

ICSF Triple DES via BSAFE
ICSF performs single, double, or triple DES depending on the length of the DES
key; if you’re using BSAFE to access ICSF triple DES, you should use the algorithm
methods AM_TOKEN_DES_CBC_ENCRYPT and
AM_TOKEN_DES_CBC_DECRYPT.

If you’ve already have an ICSF token, follow the instructions in the section titled
“Using the BSAFE KI_TOKEN”.

Appendix E. Using ICSF with BSAFE 415

If you’re using a clear key, follow the same procedure, except use your clear key
padded on the right with binary zeroes to a length of 64 as the internalKeyInfo part
of your KI_TOKEN_INFO. ICSF will convert your clear key to an internal ICSF key
token.

Here’s an example:

B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;
KEY_TOKEN_INFO myTokenInfo;
unsigned char myToken[64] = {0};
unsigned char * myTokenP;
unsigned char myDoubleKey[16]; /* Input to this function *
unsigned char mfgID[] = "com.ibm.CCADES";
unsigned char * mfgIDP;

.

.

.
myTokenP = myToken;
mfgIDP = mfgID;
T_memcpy(myToken,myDoubleKey,sizeof(myDoubleKey));
myTokenInfo.manufacturerID.len = strlen(mfgID);
myTokenInfo.manufacturerID.data = mfgIDP;
myTokenInfo.internalKeyInfo.len = sizeof(myToken);
myTokenInfo.internalKeyInfo.data = myTokenP;

/* Create a key object. */
if ((status = B_CreateKeyObject (&desKey)) != 0)

break;

/* Set the key object. */
if ((status = B_SetKeyInfo

(desKey, KI_TOKEN, myTokenInfo)) != 0)
break;

.

.

.

Retrieving ICSF Error Information
When using the ICSF and Cryptographic Coprocessor Feature, Init, Update, and
Final calls can result in BSAFE returning a status of BE_HARDWARE (0x020B).
When this occurs, you can derive the ICSF return and reason codes by using a
new BSAFE operation, B_GetExtendedErrorInfo. For an explanation of the return
codes and reason codes, see Appendix A, “ICSF and TSS Return and Reason
Codes” on page 335.

A coding example follows.
.
.

#include "balg.h"
#include "algobj.h"
#include "cca.h"

.

.
{

.

.

.
B_ALGORITHM_OBJECT * aop;
ITEM * errp;
unsigned char * algorithmMethod;
CCA_ERROR_DATA * edp;
unsigned int CCAreturnCode=0;

416 z/OS V1R3.0 ICSF Application Programmer’s Guide

unsigned int CCAreasonCode=0;
unsigned char algorithmName[40]={0x00};

.

.

.
if (status==BE_HARDWARE) {

B_GetExtendedErrorInfo(aop,errp,algorithmMethod);
edp = errp->data;
CCAreturnCode = (unsigned int) edp->returnCode;
CCAreasonCode = (unsigned int) edp->reasonCode;

}
.
.

}

The prototype for B_GetExtendedErrorInfo is in balg.h, as shown in the example
that follows.
B_GetExtendedErrorInfo (
B_ALGORITHM_OBJ algorithmObject, /* in--algorithm object */
ITEM * errorData, /* out--address and length of error data */
POINTER algorithmMethod /* out--address of faulting AM */
);

Appendix E. Using ICSF with BSAFE 417

418 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix F. Cryptographic Algorithms and Processes

This appendix describes the personal identification number (PIN) formats and
algorithms.

PIN Formats and Algorithms
For PIN calculation procedures, see IBM Common Cryptographic Architecture:
Cryptographic Application Programming Interface Reference.

PIN Notation
This section describes various PIN block formats. The following notations describe
the contents of PIN blocks:

P = A 4-bit decimal digit that is one digit of the PIN value.

C = A 4-bit hexadecimal control value. The valid values are X'0', X'1', and X'2'.

L = A 4-bit hexadecimal value that specifies the number of PIN digits. The value
ranges from 4 to 12, inclusive.

F = A 4-bit field delimiter of value X'F'.

f = A 4-bit delimiter filler that is either P or F, depending on the length of the
PIN.

D = A 4-bit decimal padding value. All pad digits in the PIN block have the same
value.

X = A 4-bit hexadecimal padding value. All pad digits in the PIN block have the
same value.

x = A 4-bit hexadecimal filler that is either P or X, depending on the length of
the PIN.

R = A 4-bit hexadecimal random digit. The sequence of R digits can each take a
different value.

r = A 4-bit random filler that is either P or R, depending on the length of the
PIN.

Z = A 4-bit hexadecimal zero (X'0').

z = A 4-bit zero filler that is either P or Z, depending on the length of the PIN.

S = A 4-bit hexadecimal digit that constitutes one digit of a sequence number.

A = A 4-bit decimal digit that constitutes one digit of a user-specified constant.

PIN Block Formats
This section describes the PIN block formats and assigns a code to each format.

ANSI X9.8
This format is also named ISO format 0, VISA format 1, VISA format 4, and ECI
format 1.

P1 = CLPPPPffffffffFF

P2 = ZZZZAAAAAAAAAAAA

© Copyright IBM Corp. 1997, 2002 419

PIN Block = P1 XOR P2

where C = X’0’
L = X’4’ to X’C’

Programming Note: The rightmost 12 digits in P2 are the rightmost 12 digits of
the account number for all formats except VISA format 4. For
VISA format 4, the rightmost 12 digits in P2 are the leftmost
12 digits of the account number.

ISO Format 1
This format is also named ECI format 4.

PIN Block = CLPPPPrrrrrrrrRR

where C = X’1’
L = X’4’ to X’C’

ISO Format 2
PIN Block = CLPPPPffffffffFF

where C = X’2’
L = X’4’ to X’C’

VISA Format 2
PIN Block = LPPPPzzDDDDDDDDD

where L = X’4’ to X’6’

VISA Format 3
This format specifies that the PIN length can be 4-12 digits, inclusive. The PIN
starts from the leftmost digit and ends by the delimiter (‘F’), and the remaining digits
are padding digits.

An example of a 6-digit PIN:
PIN Block = PPPPPPFXXXXXXXXX

IBM 4700 Encrypting PINPAD Format
This format uses the value X'F' as the delimiter for the PIN.

PIN Block = LPPPPffffffffFSS

where L = X’4’ to X’C’

IBM 3624 Format
This format requires the program to specify the delimiter, X, for determining the PIN
length.

PIN Block = PPPPxxxxxxxxXXXX

IBM 3621 Format
This format requires the program to specify the delimiter, X, for determining the PIN
length.

PIN Block = SSSSPPPPxxxxxxxx

ECI Format 2
This format defines the PIN to be 4 digits.

PIN Block = PPPPRRRRRRRRRRRR

ECI Format 3
PIN Block = LPPPPzzRRRRRRRRR

where L = X’4’ to X’6’

420 z/OS V1R3.0 ICSF Application Programmer’s Guide

|
|
|
|

PIN Extraction Rules
This section describes the PIN extraction rules for the Encrypted PIN verify and
Encrypted PIN translate callable services.

Encrypted PIN Verify Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA
format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM
Encrypting PINPAD format, or ECI format 3, the service extracts the PIN
according to the length specified in the PIN block.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction method
for the 3621 is supported through rule array keywords. If no PIN extraction
method is specified in the rule array, the specified delimiter (padding) determines
the PIN length.

v If the input PIN block format is ECI format 2, the PIN is the leftmost 4 digits.

For the VISA algorithm, if the extracted PIN length is less than 4, the services sets
a reason code that indicates that verification failed. If the length is greater than or
equal to 4, the service uses the leftmost 4 digits as the referenced PIN.

For the IBM German Banking Pool algorithm, if the extracted PIN length is not 4,
the service sets a reason code that indicates that verification failed.

For the IBM 3624 algorithm, if the extracted PIN length is less than the PIN check
length, the service sets a reason code that indicates that verification failed.

Clear PIN Generate Alternate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v This service supports the specification of a PIN extraction method for the 3624
and 3621 PIN block formats through the use of the rule_array keyword.
Rule_array points to an array of one or two 8-byte elements. The first element in
the rule array specifies the PIN calculation method. The second element in the
rule array (if specified) indicates the PIN extraction method. Refer to the “Clear
PIN Generate Alternate (CSNBCPA)” on page 220 for an explanation of PIN
extraction method keywords.

Encrypted PIN Translate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA
format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM
Encrypting PINPAD format, or ECI format 3, and if the specified PIN length is
less than 4, the service sets a reason code to reject the operation. If the
specified PIN length is greater than 12, the operation proceeds to normal
completion with unpredictable contents in the output PIN block. Otherwise, the
service extracts the PIN according to the specified length.

Appendix F. Cryptographic Algorithms and Processes 421

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction method
for the 3621 is supported through rule array keywords. If no PIN extraction
method is specified in the rule array, the specified delimiter (padding) determines
the PIN length.

v If the input block format is ECI format 2, the PIN is always the leftmost 4 digits.

If the maximum PIN length allowed by the output PIN block is shorter than the
extracted PIN, only the leftmost digits of the extracted PIN that form the allowable
maximum length are placed in the output PIN block. The PIN length field in the
output PIN block, it if exists, specifies the allowable maximum length.

IBM PIN Algorithms
This section describes the IBM PIN generation algorithms, IBM PIN offset
generation algorithm, and IBM PIN verification algorithms.

3624 PIN Generation Algorithm
This algorithm generates a n-digit PIN based on an account-related data or
person-related data, namely the validation data. The assigned PIN length parameter
specifies the length of the generated PIN.

The algorithm requires the following input parameters:

v A 64-bit validation data

v A 64-bit decimalization table

v A 4-bit assigned PIN length

v A 128-bit PIN-generation key

The service uses the PIN generation key to encipher the validation data. Each digit
of the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value of
the digit of the enciphered validation data. The result is an intermediate PIN. The
leftmost n digits of the intermediate PIN are the generated PIN, where n is specified
by the assigned PIN length.

Figure 9 illustrates the 3624 PIN generation algorithm.

422 z/OS V1R3.0 ICSF Application Programmer’s Guide

German Banking Pool PIN Generation Algorithm
This algorithm generates a 4-digit PIN based on an account-related data or
person-related data, namely the validation data.

The algorithm requires the following input parameters:

v A 64-bit validation data

v A 64-bit decimalization table

v A 128-bit PIN-generation key

The validation data is enciphered using the PIN generation key. Each digit of the
enciphered validation data is replaced by the digit in the decimalization table whose
displacement from the leftmost digit of the table is the same as the value of the digit
of enciphered validation data. The result is an intermediate PIN. The rightmost 4
digits of the leftmost 6 digits of the intermediate PIN are extracted. The leftmost
digit of the extracted 4 digits is checked for zero. If the digit is zero, the digit is
changed to one; otherwise, the digit remains unchanged. The resulting four digits is
the generated PIN.

Figure 10 illustrates the German Banking Pool (GBP) PIN generation algorithm.

Assigned PIN Length

PIN
Generation
Key

Validation Data

Intermediate PIN

Generated PIN

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 9. 3624 PIN Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 423

PIN Offset Generation Algorithm
To allow the customer to select his own PIN, a PIN offset is used by the IBM 3624
and GBP PIN generation algorithms to relate the customer-selected PIN to the
generated PIN.

The PIN offset generation algorithm requires two parameters in addition to those
used in the 3624 PIN generation algorithm. They are a customer-selected PIN and
a 4-bit PIN check length. The length of the customer-selected PIN is equal to the
assigned-PIN length, n.

The 3624 PIN generation algorithm described in the previous section is performed.
The offset data value is the result of subtracting (modulo 10) the leftmost n digits of
the intermediate PIN from the customer-selected PIN. The modulo 10 subtraction
ignores borrows. The rightmost m digits of the offset data form the PIN offset,
where m is specified by the PIN check length. Note that n cannot be less than m.
To generate a PIN offset for a GBP PIN, m is set to 4 and n is set to 6.

Figure 11 illustrates the PIN offset generation algorithm.

6 Digits

4 Digits

PIN
Generation
Key

Validation Data

Intermediate PIN

If A = 0, then Z = 1; otherwise, Z = A.

A P P P

Z P P P
(Generated PIN)

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 10. GBP PIN Generation Algorithm

424 z/OS V1R3.0 ICSF Application Programmer’s Guide

3624 PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is compared with the corresponding part of the customer-entered PIN.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-verification key
v A 4-bit PIN check length

Assigned PIN Length

Assigned PIN Length

PIN Check Length

PIN
Generation
Key

Validation Data

Intermediate PIN

A

B

Customer
Selected PIN

A - B,
where B is leftmost
n digits of the
intermediate PIN

Offset Data

PIN Offset

E
D
E

Digit
Replacement

Subtraction
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 11. PIN-Offset Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 425

v An offset data
v A customer-entered PIN

The rightmost m digits of the offset data form the PIN offset, where m is the PIN
check length.

1. The validation data is enciphered using the PIN verification key. Each digit of
the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value
of the digit of enciphered validation data.

2. The leftmost n digits of the result is added (modulo 10) to the offset data value,
where n is the length of the customer-entered PIN. The modulo 10 addition
ignores carries.

3. The rightmost m digits of the result of the addition operation form the PIN check
number. The PIN check number is compared with the rightmost m digits of the
customer-entered PIN. If they match, PIN verification is successful; otherwise,
verification is unsuccessful.

When a nonzero PIN offset is used, the length of the customer-entered PIN is equal
to the assigned PIN length.

Figure 12 illustrates the PIN verification algorithm.

426 z/OS V1R3.0 ICSF Application Programmer’s Guide

German Banking Pool PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is extracted. The extracted value may or may not be modified before it
compares with the customer-entered PIN.

The algorithm requires the following input parameters:

Length of CE PIN

Length of CE PIN

PIN Check
Length

PIN Check Length

PIN CN: PIN Check Number
CE PIN: Customer-entered PIN

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
n digits of the
intermediate
PIN

A + B

=?

CE PIN

PIN CN

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 12. PIN Verification Algorithm

Appendix F. Cryptographic Algorithms and Processes 427

v A 64-bit validation data

v A 64-bit decimalization table

v A 128-bit PIN verification key

v An offset data

v A customer-entered PIN

The rightmost 4 digits of the offset data form the PIN offset.

1. The validation data is enciphered using the PIN verification key. Each digit of
the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value
of the digit of enciphered validation data.

2. The leftmost 6 digits of the result is added (modulo 10) to the offset data. The
modulo 10 addition ignores carries.

3. The rightmost 4 digits of the result of the addition (modulo 10) are extracted.

4. The leftmost digit of the extracted value is checked for zero. If the digit is zero,
the digit is set to one; otherwise, the digit remains unchanged. The resulting
four digits are compared with the customer-entered PIN. If they match, PIN
verification is successful; otherwise, verification is unsuccessful.

Figure 13 illustrates the GBP PIN verification algorithm.

VISA PIN Algorithms
The VISA PIN verification algorithm performs a multiple encipherment of a value,
called the transformed security parameter (TSP), and a extraction of a 4-digit PIN
verification value (PVV) from the ciphertext. The calculated PVV is compared with
the referenced PVV and stored on the plastic card or data base. If they match,
verification is successful.

PVV Generation Algorithm
The algorithm generates a 4-digit PIN verification value (PVV) based on the
transformed security parameter (TSP).

The algorithm requires the following input parameters:

v A 64-bit TSP

v A 128-bit PVV generation key

Key encrypted
under sending
system's DES
master key

Key encrypted
under receiving
system's DES
master key

Prepare key
for export

Import the
key

Key encrypted
under transport
key

Key encrypted
under transport
key

Exporter key Importer key

Sending System Receiving System

Figure 13. GBP PIN Verification Algorithm

428 z/OS V1R3.0 ICSF Application Programmer’s Guide

1. A multiple encipherment of the TSP using the double-length PVV generation key
is performed.

2. The ciphertext is scanned from left to right. Decimal digits are selected during
the scan until four decimal digits are found. Each selected digit is placed from
left to right according to the order of selection. If four decimal digits are found,
those digits are the PVV.

3. If, at the end of the first scan, less than four decimal digits have been selected,
a second scan is performed from left to right. During the second scan, all
decimal digits are skipped and only nondecimal digits can be processed.
Nondecimal digits are converted to decimal digits by subtracting 10. The
process proceeds until four digits of PVV are found.

Figure 14 illustrates the PVV generation algorithm.

Programming Note: For VISA PVV algorithms, the leftmost 11 digits of the TSP
are the personal account number (PAN), the leftmost 12th
digit is a key table index to select the PVV generation key,
and the rightmost 4 digits are the PIN. The key table index
should have a value between 1 and 6, inclusive.

PVV Verification Algorithm
The algorithm requires the following input parameters:

v A 64-bit TSP

PGK = PVV Generation Key
= PGKL PGKR

Scan the result from left to
right to select 4 digits

PGKL

PGKR

PGKL

TSP

Encipherment Result

4-digit PVV

E

D

E

Figure 14. PVV Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 429

v A 16-bit referenced PVV

v A 128-bit PVV verification key

A PVV is generated using the PVV generation algorithm, except a PVV verification
key rather than a PVV generation key is used. The generated PVV is compared
with the referenced PVV. If they match, verification is successful.

Interbank PIN Generation Algorithm
The Interbank PIN calculation method consists of the following steps:

1. Let X denote the transaction_security parameter element converted to an array
of 16 4-bit numeric values. This parameter consists of (in the following
sequence) the 11 rightmost digits of the customer PAN (excluding the check
digit), a constant of 6, a 1-digit key indicator, and a 3-digit validation field.

2. Encrypt X with the double-length PINGEN (or PINVER) key to get 16
hexadecimal digits (64 bits).

3. Perform decimalization on the result of the previous step by scanning the 16
hexadecimal digits from left to right, skipping any digit greater than X'9' until 4
decimal digits (for example, digits that have values from X'0' to X'9') are found.

If all digits are scanned but 4 decimal digits are not found, repeat the scanning
process, skipping all digits that are X'9' or less and selecting the digits that are
greater than X'9'. Subtract 10 (X'A') from each digit selected in this scan.

If the 4 digits that were found are all zeros, replace the 4 digits with 0100.

4. Concatenate and use the resulting digits for the Interbank PIN. The 4-digit PIN
consists of the decimal digits in the sequence in which they are found.

Cipher Processing Rules
The DES defines operations on 8-byte data strings. Although the fundamental
concepts of ciphering (enciphering and deciphering) and data verification are
simple, there are different approaches to processing data strings that are not a
multiple of 8 bytes in length. These approaches are defined in various standards
and IBM products.

CBC and ANSI X3.106
ANSI standard X3.106 defines four methods of operation for ciphering. One of
these modes, cipher block chaining (CBC), defines the basic method for performing
ciphering on multiple 8-byte data strings. A plaintext data string, which must be a
multiple of 8 bytes, is processed as a series of 8-byte groups. The ciphered result
from processing an 8-byte group is exclusive ORed with the next group of 8 input
bytes. The last 8-byte ciphered result is defined as an output chaining vector
(OCV). ICSF stores the output chaining vector value in the chaining_vector
parameter.

An initial chaining vector is exclusive ORed with the first group of 8 input bytes.

In summary:

v An input chaining vector (ICV) is required.

v If the text_length is not an exact multiple of 8 bytes, the request fails.

v The plaintext is not padded, for example, the output text length is not increased.

ANSI X9.23 and IBM 4700
An enhancement to the basic cipher block chaining mode of ANSI X3.106 is defined
so the data lengths that are not an exact multiple of 8 bytes can be processed. The

430 z/OS V1R3.0 ICSF Application Programmer’s Guide

ANSI X9.23 method always adds from 1 byte to 8 bytes to the plaintext before
encipherment. The last added byte is the count of the added bytes and is in the
range of X'01' to X'08'. The standard defines that the other added bytes, the pad
characters, are random.

When ICSF enciphers the plaintext, the resulting ciphertext is always 1 to 8 bytes
longer than the plaintext.

When ICSF deciphers the ciphertext, ICSF uses the last byte of the deciphered
data as the number of bytes to be removed (the pad bytes and the count byte). The
resulting plaintext is the same as the original plaintext.

The output chaining vector can be used as feedback with this method in the same
way as with the X3.106 method.

In summary, for the ANSI X9.23 method:
v X9.23 processing requires the caller to supply an ICV.
v X9.23 encipher does not allow specification of a pad character.

The 4700 padding rule is similar to the X9.23 rule. The only difference is that in the
X9.23 method, the padding character is not user-selected, but the padding string is
selected by the encipher process.

Segmenting
The callable services can operate on large data objects. Segmenting is the process
of dividing the function into more than one processing step. Your application can
divide the process into multiple steps without changing the final outcome.

To provide segmenting capability, the MAC generation, MAC verification, and MDC
generation callable services require an 18-byte system work area in the application
address space that is provided as the chaining vector parameter to the callable
service. The application program must not change the system work area.

Cipher Last-Block Rules
The DES defines cipher-block chaining as operating on multiples of 8 bytes. Various
algorithms are used to process strings that are multiples of 8 bytes. The algorithms
are generically named “last-block rules”. You select the supported last-block rules
by using these keywords:
v X9.23
v IPS
v CUSP (also used with PCF)
v 4700-PAD

You specify which cipher last-block rule you want to use in the rule_array parameter
of the callable service.

CUSP Considerations
If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV is
exclusive ORed with the first 8-byte block of plaintext, and the resulting 8 bytes are
passed to the DES with the specified key. The resulting 8-byte block of ciphertext is
then exclusive ORed with the second 8-byte block of plaintext, and the value is
enciphered. This process continues until the last 8-byte block of plaintext is to be
enciphered. Because the length of this last block is exactly 8 bytes, the last block is
processed in an identical manner to all the preceding blocks.

To produce the OCV, the last block of ciphertext is enciphered again (thus
producing a double-enciphered block). The user can pass this value of the OCV as

Appendix F. Cryptographic Algorithms and Processes 431

the ICV in his next encipher call to produce chaining between successive calls. The
caller can alternatively pass the same ICV on every call to the callable service.

If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial
block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1 to
7 bytes of this double-enciphered block has two uses. The first use is to exclusive
OR this block with the last short block of plaintext to form the last short block of the
ciphertext. The second use is to pass it back as the OCV. Thus, the OCV is the last
complete 8-byte block of plaintext, doubly enciphered.

If the length of the data to be enciphered is less than 8 bytes, the ICV is enciphered
under the specified key. The first 1 to 7 bytes of the enciphered ICV is exclusive
ORed with the plaintext to form the ciphertext. The OCV is the enciphered ICV.

The Information Protection System (IPS)
The Information Protection System (IPS) offers two forms of chaining: block and
record. Under record chaining, the OCV for each enciphered data string becomes
the ICV for the next. Under block chaining, the same ICV is used for each
encipherment.

Files that are enciphered directly with the ICSF encipher callable service cannot be
properly deciphered using the IPS/CMS CIPHER command or the IPS/CMS
subroutines. Both IPS/CMS CIPHER and AMS REPRO ENCIPHER write headers to
their files that contain information (principally the ICV and chaining method) needed
for decipherment. The encipher callable service does not generate these headers.
Specialized techniques are described in IPS/CMS documentation to overcome
some, if not all, of these limitations, depending on the chaining mode. As a rough
test, you can attempt a decipherment with the CIPHER command HDWARN option,
which causes CIPHER to continue processing even though the header is absent.

The encipher callable service returns an OCV used by IPS for record chaining. This
allows cryptographic applications using ICSF to be compatible with IPS record
chaining.

Record chaining provides a superior method of handling successive short blocks,
and has better error recovery features when the caller passes successive short
blocks.

The principle used by record chaining is that the OCV is the last 8 bytes of
ciphertext. This is handled as follows:

v If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV
is exclusive ORed with the first 8 byte block of plaintext, and the resulting 8 bytes
are passed to the DES with the specified key. The resulting 8-byte block of
ciphertext is then exclusive ORed with the second 8-byte block of plaintext, and
the resulting value is enciphered. This process continues until the last 8-byte
block of plaintext is to be enciphered. Because the length of this last block is
exactly 8 bytes, the last block is processed in an identical manner to all the
preceding blocks.

The OCV is the last 8 bytes of ciphertext.

The user can pass this value as the ICV in the next encipher call to produce
chaining between successive calls.

v If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial

432 z/OS V1R3.0 ICSF Application Programmer’s Guide

block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1
to 7 bytes of this doubly enciphered block is then exclusive ORed with the last
short block of plaintext to form the last short block of the ciphertext. The OCV is
the last 8 bytes of ciphertext.

v If the length of the data to be enciphered is less than 8 bytes, then the ICV is
enciphered under the specified key. The first 1 to 7 bytes of the enciphered ICV
is exclusive ORed with the plaintext to form the ciphertext. The OCV is the
rightmost 8 bytes of the plaintext ICV concatenated with the short block of
ciphertext. For example:

ICV = ABCDEFGH
ciphertext = XYZ
OCV = DEFGHXYZ

Multiple Decipherment and Encipherment
This appendix explains multiple encipherment and decipherment and their
equations.

The Integrated Cryptographic Feature uses multiple encipherment whenever it
enciphers a key under a key-encrypting key like the master key or the transport key
and in triple-DES encipherment for data privacy. Multiple encipherment is superior
to single encipherment because multiple encipherment increases the work needed
to “break” a key. ICSF provides extra protection for a key by enciphering it under an
enciphering key multiple times rather than once. The multiple encipherment method
for keys enciphered under a key-encrypting key uses a double-length (128 bit) key
split into two 64-bit halves. Like single encipherment, multiple encipherment uses a
DES based on the electronic code book (ECB) mode of encipherment.

Keys can either be double-length or single-length depending on the installation and
their cryptographic function. When a single-length key is encrypted under a
double-length key, multiple encipherment is performed on the key. In the multiple
encipherment method, the key is encrypted under the left half of the enciphering
key. The result is then decrypted under the right half of the enciphering key. Finally,
this result is encrypted under the left half of the enciphering key again.

When a double-length key is encrypted with multiple encipherment, the method is
similar, except ICSF uses two enciphering keys. One enciphering key encrypts each
half of the double-length key. Double-length keys active on the system have two
master key variants used when enciphering them.

Multiple encipherment and decipherment is not only used to protect or retrieve a
cryptographic key, but they are also used to protect or retrieve 64-bit data in the
area of PIN applications. For example, the following two sections use a
double-length *KEK as an example to cipher a single-length key even though the
same algorithms apply to cipher 64-bit data by a double-length PIN-related
cryptographic key.

ICSF also supports triple-DES encipherment for data privacy using double-length
and triple-length DATA keys. For this procedure the data is first enciphered using
the first DATA key. The result is then deciphered using the second DATA key. This
second result is then enciphered using the third DATA key when a triple-length key
is provided, or reusing the first DATA key when a double-length key is provided.

Note that an asterisk (*) preceding the key means that the key is double-length.
Notations in this chapter have the following meaning:

Appendix F. Cryptographic Algorithms and Processes 433

v eK(x), where x is enciphered under K
v dK(y) represents plaintext, where K is the key and y is the ciphertext

Therefore, dK(eK(x)) equals x for any 64-bit key K and any 64-bit plaintext x.

When a key (*K) to be protected is double-length, two double-length *KEKs are
used. One *KEK is used for protecting the left half of the key (*K); another is for the
right half. Multiple encipherment is used with the appropriate *KEK for protecting
each half of the key.

Multiple Encipherment of Single-length Keys
The multiple encipherment of a single-length key (K) using a double-length *KEK is
defined as follows:

e*KEK(K) = eKEKL(dKEKR(eKEKL(K)))

where KEKL is the left 64 bits of *KEK and KEKR is the right 64 bits of *KEK.

Figure 15 illustrates the definition.

Multiple Decipherment of Single-length Keys
The multiple encipherment of an encrypted single-length key (Y = e*KEK(K)) using
a double-length *KEK is defined as follows:

d*KEK(Y) = dKEKL(eKEKR(dKEKL(Y)))
= d*KEK(e*KEK(K))
= K

where KEKL is the left 64 bits of *KEK and KEKR is the right 64 bits of *KEK.

Figure 16 illustrates the definition.

KEKL

KEKR

KEKL

K

e*KEK(K)

E

D

E

Figure 15. Multiple Encipherment of Single-length Keys

434 z/OS V1R3.0 ICSF Application Programmer’s Guide

Multiple Encipherment of Double-length Keys
The multiple encipherment of a double-length key (*K) using two double-length
*KEKs, *KEKa and *KEKb is defined as follows:
e*KEKa(KL) || e*KEKb(KR) =

eKEKaL(dKEKaR(eKEKaL(KL))) ||
eKEKbL(dKEKbR(eKEKbL(KR)))

where:
v KL is the left 64 bits of *K.
v KR is the right 64 bits of *K.
v KEKaL is the left 64 bits of *KEKa.
v KEKaR is the right 64 bits of *KEKa.
v KEKbL is the left 64 bits of *KEKb.
v KEKbR is the right 64 bits of *KEKb.
v { means concatenation.

Figure 17 illustrates the definition.

KEKL

KEKR

KEKL

K

e*KEK(K)

D

E

D

Figure 16. Multiple Decipherment of Single-length Keys

Appendix F. Cryptographic Algorithms and Processes 435

Multiple Decipherment of Double-length Keys
The multiple decipherment of an encrypted double-length key, *Y = e*KEKa(KL) ||
e*KEKb(KR), using two double-length *KEKs, *KEKa and *KEKb, is defined as
follows:

D*KEKa(YL) || d*KEKb(YR)
= dKEKaL(eKEKaR(dKEKaL(YL))) ||

dKEKbL(eKEKbR(dKEKbL(YR)))
= d*KEKa(e*KEKa(KL)) ||

d*KEKb(e*KEKb(KR))
= *K

where
v YL is the left 64 bits of *Y.
v YR is the right 64 bits of *Y.
v KEKaL is the left 64 bits of *KEKa.
v KEKaR is the right 64 bits of *KEKa.
v KEKbL is the left 64 bits of *KEKb.
v KEKbR is the right 64 bits of *KEKb.
v { means concatenation.

Figure 18 illustrates the definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

e*KEKa(KL) e*KEKb(KR)

KL KR

E E

D D

E E

Figure 17. Multiple Encipherment of Double-length Keys

436 z/OS V1R3.0 ICSF Application Programmer’s Guide

Multiple Encipherment of Triple-length Keys
The multiple encipherment of a triple-length key (**K) using two double-length
*KEKs, *KEKa and *KEKb is defined as follows:
e*KEKa(KL) || e*KEKb(KM) || e*KEKa(KR) =

eKEKaL(dKEKaR(eKEKaL(KL))) ||
eKEKbL(dKEKbR(eKEKbL(KM))) ||
eKEKaL(dKEKaR(eKEKaL(KR)))

where:

v KL is the left 64 bits of **K

v KM is the next 64 bits of **K

v KR is the right 64 bits of **K

v KEKaL is the left 64 bits of *KEKa

v KEKaR is the right 64 bits of *KEKa

v KEKbL is the left 64 bits of *KEKb

v KEKbR is the right 64 bits of *KEKb

v || means concatenation

Figure 19 on page 438 illustrates the definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

YL = e*KEKa(KL) YR = e*KEKb(KR)

KL KR

D D

E E

D D

Figure 18. Multiple Decipherment of Double-length Keys

Appendix F. Cryptographic Algorithms and Processes 437

Multiple Decipherment of Triple-length Keys
The multiple decipherment of an encrypted triple-length key **Y = e*KEKa(KL) ||
e*KEKb(KM) || e*KEKa(KR), using two double-length *KEKs, *KEKa and *KEKb, is
defined as follows:
d*KEKa(YL) || d*KEKb(YM) || d*KEKa(YR)

= dKEKaL(eKEKaR(dKEKaL(YL))) ||
dKEKbL(eKEKbR(dKEKbL(YM))) ||
dKEKaL(eKEKaR(dKEKaL(YR)))

= d*KEKa(e*KEKa(KL)) ||
d*KEKb(e*KEKb(KM)) ||
d*KEKa(e*KEKa(KR))

= **K

where:

v YL is the left 64 bits of **Y

v YM is the next 64 bits of **Y

v YR is the right 64 bits of **Y

v KEKaL is the left 64 bits of *KEKa

v KEKaR is the right 64 bits of *KEKa

v KEKbL is the left 64 bits of *KEKb

v KEKbR is the right 64 bits of *KEKb

v || means concatenation

Figure 20 on page 439 illustrates the definition.

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

YL = e*KEKa(KL) YM = e*KEKb(KM) YR = e*KEKa(KR)

KL KM KR

D D D

E E E

D D D

Figure 19. Multiple Encipherment of Triple-length Keys

438 z/OS V1R3.0 ICSF Application Programmer’s Guide

PKA92 Key Format and Encryption Process
The PKA Symmetric Key Generate and the PKA Symmetric Key Import callable
services optionally support a PKA92 method of encrypting a DES or CDMF key
with an RSA public key. This format is adapted from the IBM Transaction Security
System (TSS) 4753 and 4755 product’s implementation of “PKA92”. The callable
services do not create or accept the complete PKA92 AS key token as defined for
the TSS products. Rather, the callable services only support the actual
RSA-encrypted portion of a TSS PKA92 key token, the AS External Key Block.

Forming an External Key Block - The PKA96 implementation forms an AS
External Key Block by RSA-encrypting a key block using a public key. The key
block is formed by padding the key record detailed in Table 113 with zero bits on
the left, high-order end of the key record. The process completes the key block with
three sub-processes: masking, overwriting, and RSA encrypting.

Table 113. PKA96 Clear DES Key Record

Offset
(Bytes)

Length
(Bytes)

Description

Zero-bit padding to form a structure as long as the length of the public key modulus. The
implementation constrains the public key modulus to a multiple of 64 bits in the range of
512 to 1024 bits. Note that government export or import regulations can impose limits on
the modulus length. The maximum length is validated by a check against a value in the
Function Control Vector.

000 005 Header and flags: X'01 0000 0000'

005 016 Environment Identifier (EID), encoded in ASCII

021 008 Control vector base for the DES key

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

e*KEKa(KL) e*KEKb(KM) e*KEKa(KR)

KL KM KR

E E E

D D D

E E E

Figure 20. Multiple Decipherment of Triple-length Keys

Appendix F. Cryptographic Algorithms and Processes 439

Table 113. PKA96 Clear DES Key Record (continued)

Offset
(Bytes)

Length
(Bytes)

Description

029 008 Repeat of the CV data at offset 021

037 008 The single-length DES key or the left half of a double-length
DES key

045 008 The right half of a double-length DES key or a random number.
This value is locally designated ″K.″

053 008 Random number, ″IV″

061 001 Ending byte, X'00'

Masking Sub-process - Create a mask by CBC encrypting a multiple of 8 bytes of
binary zeros using K as the key and IV as the initialization vector as defined in the
key record at offsets 45 and 53. Exclusive-OR the mask with the key record and
call the result PKR.

Overwriting Sub-process - Set the high-order bits of PKR to B'01', and set the
low-order bits to B'0110'.

Exclusive-OR K and IV and write the result at offset 45 in PKR.

Write IV at offset 53 in PKR. This causes the masked and overwritten PKR to have
IV at its original position.

Encrypting Sub-process - RSA encrypt the overwritten PKR masked key record
using the public key of the receiving node.

Recovering a Key from an External Key Block - Recover the encrypted DES key
from an AS External Key Block by performing decrypting, validating, unmasking,
and extraction sub-processes.

Decrypting Sub-process - RSA decrypt the AS External Key Block using an RSA
private key and call the result of the decryption PKR. The private key must be
usable for key management purposes.

Validating Sub-process - Verify that the high-order two bits of the PKR record are
valued to B'01' and that the low-order four bits of the PKR record are valued to
B'0110'.

Unmasking Sub-process - Set IV to the value of the 8 bytes at offset 53 of the PKR
record. Note that there is a variable quantity of padding prior to offset 0. See
Table 113 on page 439.

Set K to the exclusive-OR of IV and the value of the 8 bytes at offset 45 of the PKR
record.

Create a mask that is equal in length to the PKR record by CBC encrypting a
multiple of 8 bytes of binary zeros using K as the key and IV as the initialization
vector. Exclusive-OR the mask with PKR and call the result the key record.

Copy K to offset 45 in the PKR record.

Extraction Sub-process. Confirm that:

440 z/OS V1R3.0 ICSF Application Programmer’s Guide

v The four bytes at offset 1 in the key record are valued to X'0000 0000'
v The two control vector fields at offsets 21 and 29 are identical
v If the control vector is an IMPORTER or EXPORTER key class, that the EID in

the key record is not the same as the EID stored in the cryptographic engine.

The control vector base of the recovered key is the value at offset 21. If the control
vector base bits 40 to 42 are valued to B'010' or B'110', the key is double length.
Set the right half of the received key’s control vector equal to the left half and
reverse bits 41 and 42 in the right half.

The recovered key is at offset 37 and is either 8 or 16 bytes long based on the
control vector base bits 40 to 42. If these bits are valued to B'000', the key is single
length. If these bits are valued to B'010' or B'110', the key is double length.

ANSI X9.17 Partial Notarization Method
The ANSI X9.17 notarization process can be divided into two procedures:

1. Partial notarization, in which the ANSI key-encrypting key (AKEK) is
cryptographically combined with the origin and destination identifiers.

Note: IBM defines this step as partial notarization. The ANSI X9.17 standard
does not use the term partial notarization.

2. Offsetting, in which the result of the first step is exclusive-ORed with a counter
value. ICSF performs the offset procedure to complete the notarization process
when you use a partially notarized AKEK.

This appendix describes partial notarization for the ANSI X9.17 notarization
process.

Partial Notarization
Partial notarization improves performance when you use an AKEK for many
cryptographic service messages, each with a different counter value.

This section describes the steps in partial notarization. For more information about
partial notarization, see “ANSI X9.17 Key Management Services” on page 27. For a
description of the steps ICSF uses to complete the notarization of an AKEK or to
notarize a key in one process, see ANSI X9.17 - 1985, Financial Institution Key
Management (Wholesale).

Notations Used in the Calculations
*KK The 16-byte AKEK to be partially notarized
KKL The leftmost 8 bytes of *KK
KKR The rightmost 8 bytes of *KK
KK The 8-byte AKEK to be partially notarized

KK1 An 8-byte intermediate result
KK2 An 8-byte intermediate result

FMID The 16-byte origin identifier
FMID1 The leftmost 8 bytes of FMID
FMID2 The rightmost 8 bytes of FMID

TOID The 16-byte destination identifier
TOID1 The leftmost 8 bytes of TOID
TOID2 The rightmost 8 bytes of TOID

Appendix F. Cryptographic Algorithms and Processes 441

NSL An 8-byte intermediate result
NSL1 The leftmost 4 bytes of NSL

NSR An 8-byte intermediate result
NSR2 The rightmost 4 bytes of NSR

*KKNI The 16-byte partially notarized AKEK
KKNIL

The leftmost 8 bytes of *KKNI
KKNIR

The rightmost 8 bytes of *KKNI
KKNI The 8-byte partially notarized AKEK

XOR Denotes the exclusive-OR operation
TOID1<<1

Denotes the ASCII TOID1 left-shifted one bit
FMID1<<1

Denotes the ASCII FMID1 left-shifted one bit
eK(X) Denotes DES encryption of plaintext X using key K
{ Denotes the concatenation operation

Partial Notarization Calculation for a Double-Length AKEK
For a double-length AKEK, the partial notarization calculation consists of the
following steps:
1. Set KK1 = KKL XOR TOID1<<1
2. Set KK2 = KKR XOR FMID1<<1
3. Set NSL = eKK2(TOID2)
4. Set NSR = eKK1(FMID2)
5. Set KKNIL = KKL XOR NSL
6. Set KKNIR = KKR XOR NSR
7. Set *KKNI = KKNIL{ KKNIR

Partial Notarization Calculation for a Single-Length AKEK
For a single-length AKEK, the partial notarization calculation consists of the
following steps:
1. Set KK1 = KK XOR TOID1<<1
2. Set KK2 = KK XOR FMID1<<1
3. Set NSL = eKK2(TOID2)
4. Set NSR = eKK1(FMID2)
5. Set NSL = NSL1 { NSR2
6. Set KKNI = KK XOR NSL

Transform CDMF Key Algorithm
The CDMF key transformation algorithm uses a 64-bit cryptographic key.

1. Set parity bits of the key to zero by ANDing the key with
X'FEFEFEFEFEFEFEFE' to produce Kx.

2. Using DES, encipher Kx under the constant K1.

3. XOR this value with Kx to produce Ky.

4. AND Ky with X'0EFE0EFE0EFE0EFE' to produce Kz.

5. Using DES, encipher Kz under K2 to produce eK2(Kz).

6. Adjust eK2(Kz) to odd parity in each byte. The result is the transformed key.

442 z/OS V1R3.0 ICSF Application Programmer’s Guide

The following figure illustrates these steps. (e indicates DES encryption.)

Kx

eK1(Kx)

Ky

Kz

eK2(Kz)

TCDM Key

X 'FEFEFEFEFEFEFEFE'

X'0EFE0EFE0EFE0EFE'

K1 = X'C408B0540BA1E0AE'

K2 = X'EF2C041CE6382FE6'

CDMF Key

AND

e

e

Adjust
to odd
parity

XOR

AND

Figure 21. The CDMF Key Transformation Algorithm

Appendix F. Cryptographic Algorithms and Processes 443

444 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix G. EBCDIC and ASCII Default Conversion Tables

This section presents tables showing EBCDIC to ASCII and ASCII to EBCDIC
conversion tables. In the table headers, EBC refers to EBCDIC and ASC refers to
ASCII.

Table 114 shows the EBCDIC to ASCII default conversion table.

Table 114. EBCDIC to ASCII Default Conversion Table

EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC

00 00 20 81 40 20 60 2D 80 F8 A0 C8 C0 7B E0 5C

01 01 21 82 41 A6 61 2F 81 61 A1 7E C1 41 E1 E7

02 02 22 1C 42 E1 62 DF 82 62 A2 73 C2 42 E2 53

03 03 23 84 43 80 63 DC 83 63 A3 74 C3 43 E3 54

04 CF 24 86 44 EB 64 9A 84 64 A4 75 C4 44 E4 55

05 09 25 0A 45 90 65 DD 85 65 A5 76 C5 45 E5 56

06 D3 26 17 46 9F 66 DE 86 66 A6 77 C6 46 E6 57

07 7F 27 1B 47 E2 67 98 87 67 A7 78 C7 47 E7 58

08 D4 28 89 48 AB 68 9D 88 68 A8 79 C8 48 E8 59

09 D5 29 91 49 8B 69 AC 89 69 A9 7A C9 49 E9 5A

0A C3 2A 92 4A 9B 6A BA 8A 96 AA EF CA CB EA A0

0B 0B 2B 95 4B 2E 6B 2C 8B A4 AB C0 CB CA EB 85

0C 0C 2C A2 4C 3C 6C 25 8C F3 AC DA CC BE EC 8E

0D 0D 2D 05 4D 28 6D 5F 8D AF AD 5B CD E8 ED E9

0E 0E 2E 06 4E 2B 6E 3E 8E AE AE F2 CE EC EE E4

0F 0F 2F 07 4F 7C 6F 3F 8F C5 AF F9 CF ED EF D1

10 10 30 E0 50 26 70 D7 90 8C B0 B5 D0 7D F0 30

11 11 31 EE 51 A9 71 88 91 6A B1 B6 D1 4A F1 31

12 12 32 16 52 AA 72 94 92 6B B2 FD D2 4B F2 32

13 13 33 E5 53 9C 73 B0 93 6C B3 B7 D3 4C F3 33

14 C7 34 D0 54 DB 74 B1 94 6D B4 B8 D4 4D F4 34

15 B4 35 1E 55 A5 75 B2 95 6E B5 B9 D5 4E F5 35

16 08 36 EA 56 99 76 FC 96 6F B6 E6 D6 4F F6 36

17 C9 37 04 57 E3 77 D6 97 70 B7 BB D7 50 F7 37

18 18 38 8A 58 A8 78 FB 98 71 B8 BC D8 51 F8 38

19 19 39 F6 59 9E 79 60 99 72 B9 BD D9 52 F9 39

1A CC 3A C6 5A 21 7A 3A 9A 97 BA 8D DA A1 FA B3

1B CD 3B C2 5B 24 7B 23 9B 87 BB D9 DB AD FB F7

1C 83 3C 14 5C 2A 7C 40 9C CE BC BF DC F5 FC F0

1D 1D 3D 15 5D 29 7D 27 9D 93 BD 5D DD F4 FD FA

1E D2 3E C1 5E 3B 7E 3D 9E F1 BE D8 DE A3 FE A7

1F 1F 3F 1A 5F 5E 7F 22 9F FE BF C4 DF 8F FF FF

© Copyright IBM Corp. 1997, 2002 445

Table 115 shows the ASCII to EBCDIC default conversion table.

Table 115. ASCII to EBCDIC Default Conversion Table

ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC

00 00 20 40 40 7C 60 79 80 43 A0 EA C0 AB E0 30

01 01 21 5A 41 C1 61 81 81 20 A1 DA C1 3E E1 42

02 02 22 7F 42 C2 62 82 82 21 A2 2C C2 3B E2 47

03 03 23 7B 43 C3 63 83 83 1C A3 DE C3 0A E3 57

04 37 24 5B 44 C4 64 84 84 23 A4 8B C4 BF E4 EE

05 2D 25 6C 45 C5 65 85 85 EB A5 55 C5 8F E5 33

06 2E 26 50 46 C6 66 86 86 24 A6 41 C6 3A E6 B6

07 2F 27 7D 47 C7 67 87 87 9B A7 FE C7 14 E7 E1

08 16 28 4D 48 C8 68 88 88 71 A8 58 C8 A0 E8 CD

09 05 29 5D 49 C9 69 89 89 28 A9 51 C9 17 E9 ED

0A 25 2A 5C 4A D1 6A 91 8A 38 AA 52 CA CB EA 36

0B 0B 2B 4E 4B D2 6B 92 8B 49 AB 48 CB CA EB 44

0C 0C 2C 6B 4C D3 6C 93 8C 90 AC 69 CC 1A EC CE

0D 0D 2D 60 4D D4 6D 94 8D BA AD DB CD 1B ED CF

0E 0E 2E 4B 4E D5 6E 95 8E EC AE 8E CE 9C EE 31

0F 0F 2F 61 4F D6 6F 96 8F DF AF 8D CF 04 EF AA

10 10 30 F0 50 D7 70 97 90 45 B0 73 D0 34 F0 FC

11 11 31 F1 51 D8 71 98 91 29 B1 74 D1 EF F1 9E

12 12 32 F2 52 D9 72 99 92 2A B2 75 D2 1E F2 AE

13 13 33 F3 53 E2 73 A2 93 9D B3 FA D3 06 F3 8C

14 3C 34 F4 54 E3 74 A3 94 72 B4 15 D4 08 F4 DD

15 3D 35 F5 55 E4 75 A4 95 2B B5 B0 D5 09 F5 DC

16 32 36 F6 56 E5 76 A5 96 8A B6 B1 D6 77 F6 39

17 26 37 F7 57 E6 77 A6 97 9A B7 B3 D7 70 F7 FB

18 18 38 F8 58 E7 78 A7 98 67 B8 B4 D8 BE F8 80

19 19 39 F9 59 E8 79 A8 99 56 B9 B5 D9 BB F9 AF

1A 3F 3A 7A 5A E9 7A A9 9A 64 BA 6A DA AC FA FD

1B 27 3B 5E 5B AD 7B C0 9B 4A BB B7 DB 54 FB 78

1C 22 3C 4C 5C E0 7C 4F 9C 53 BC B8 DC 63 FC 76

1D 1D 3D 7E 5D BD 7D D0 9D 68 BD B9 DD 65 FD B2

1E 35 3E 6E 5E 5F 7E A1 9E 59 BE CC DE 66 FE 9F

1F 1F 3F 6F 5F 6D 7F 07 9F 46 BF BC DF 62 FF FF

446 z/OS V1R3.0 ICSF Application Programmer’s Guide

Appendix H. Access Control Points and Callable Services

Access to services that are executed on the PCI Cryptographic Coprocessor is
through Access Control Points in the DEFAULT Role. To execute callable services
on the PCI Cryptographic Coprocessor, access control points must be enabled for
each service in the DEFAULT Role. The ability to enable/disable access control
points in the DEFAULT Role was introduced on OS/390 V2R10 through APAR
OW46381 for the Trusted Key Entry Workstation. For systems that do not use the
optional TKE Workstation, all access control points (current and new) are enabled in
the DEFAULT Role with the appropriate microcode level on the PCI Cryptographic
Coprocessor. New TKE customers and Non-TKE customers have all access control
points enabled. This is also true for brand new TKE V3.1 users (not converting from
TKE V3.0).

Note: Access control point DKYGENKY-DALL is always disabled in the DEFAULT
Role for all customers (TKE and Non-TKE). A TKE Workstation is required to
enable this access control point for the Diversified Key Generate service.

For existing TKE V3.0 users, upgrading to TKE V3.1 (APAR OW46381 and its
corresponding ECA), current access control points in the DEFAULT Role are
enabled. Any new access control points are disabled in the DEFAULT Role and
must be enabled through TKE if the service is required.

Notes:

1. APAR OW46381 will update the TKE Host Code

2. ECA 186 will update the TKE Workstation Code

3. The latest or most current driver is required for the PCI Cryptographic
Coprocessor microcode for the S/390 G5 Enterprise Server or the S/390 G6
Enterprise Server

4. The latest or most current driver is required for the PCI Cryptographic
Coprocessor microcode for the IBM Eserver zSeries 900

All of the above components are required for complete access control point support.

Access to services which execute on the Cryptographic Coprocessor Feature is
through SAF. Disablement through SAF is sufficient to prevent execution of a
service by either the Cryptographic Coprocessor Feature or the PCI Cryptographic
Coprocessor. For functions which can be executed on the PCI Cryptographic
Coprocessor, enablement of the function requires that the function be enabled
through SAF and through the access control point in the DEFAULT Role.

If you are on OS/390 V2 R10, using a TKE V3.0 workstation, access control points
for new services (requiring APARs OW46380 and OW46382) will be disabled.
Existing access control points will be enabled in the DEFAULT Role. APAR
OW46381 must be installed to enable the OS/390 V2 R10 interface. This will allow
the TKE Administrator to enable any new access control points for ICSF services
that execute in the PCI Cryptographic Coprocessor under the DEFAULT Role.

Access Control Points (requiring APARs OW46380 and OW46382) for OS/390
V2R10 are:

v DATAM Key Management Control

© Copyright IBM Corp. 1997, 2002 447

|
|
|

|
|

Note: For existing TKE installations (upgrading to TKE V3.1), it is required that
this access control point be enabled. Failure to do so will result in
processing errors for Double MAC keys in Key Import, Key Export, and
Key Generate.

v Diversified Key Generate - Single length or same halves

v Diversified Key Generate - CLR8-ENC

v Diversified Key Generate - TDES-ENC

v Diversified Key Generate - TDES-DEC

v Diversified Key Generate - SESS-XOR

v Diversified Key Generate - DKYGENKY-DALL

Note: This access control point is always disabled in the DEFAULT Role for all
customers (TKE and Non-TKE). A TKE Workstation is required to enable
the function.

v MAC Generate - For existing TKE installations, it is recommended that this
access control point be enabled.

v MAC Verify - For existing TKE installations, it is recommended that this access
control point be enabled.

Access Control Points for z/OS V1 R2 are:

v PKA Key Token Change

v Secure Messaging for Keys

v Secure Messaging for PINs

Access Control Points for z/OS V1 R3 are:

v UKPT - PIN Verify, PIN Translate

If an access control point is disabled, the corresponding ICSF callable service will
fail during execution with an access denied error.

Access Control Point Callable Service

Clear PIN Encrypt CSNBCPE

Clear PIN Generate - 3624 CSNBPGN

Clear PIN Generate - GPB CSNBPGN

Clear PIN Generate - VISA PVV CSNBPGN

Clear PIN Generate - Interbank CSNBPGN

Clear Pin Generate Alternate - 3624 Offset CSNBCPA

Clear PIN Generate Alternate - VISA PVV CSNBCPA

Control Vector Translate CSNBCVT

Cryptographic Variable Encipher CSNBCVE

CVV Generate CSNBCSG

CVV Verify CSNBCSV

DATAM Key Management Control CSNBKGN, CSNBKIM, CSNBKEX
and CSNBDKG

Data Key Export CSNBDKX

Data Key Import CSNBDKM

Digital Signature Generate CSNDDSG

Diversified Key Generate - CLR8–ENC CSNBDKG

448 z/OS V1R3.0 ICSF Application Programmer’s Guide

|

|

Diversified Key Generate - TDES-ENC CSNBDKG

Diversified Key Generate - TDES-DEC CSNBDKG

Diversified Key Generate - SESS-XOR CSNBDKG

Diversified Key Generate - single length or same
halves

CSNBDKG

DKYGENKY - DALL CSNBDKG

Encrypted PIN Generate - 3624 CSNBEPG

Encrypted PIN Generate - GPB CSNBEPG

Encrypted PIN Generate - Interbank CSNBEPG

Encrypted PIN Translate - Translate CSNBPTR

Encrypted PIN Translate - Reformat CSNBPTR

Encrypted PIN Verify - 3624 CSNBPVR

Encrypted PIN Verify - GPB CSNBPVR

Encrypted PIN Verify - VISA PVV CSNBPVR

Encrypted PIN Verify - Interbank CSNBPVR

Key Export CSNBKEX

Key Generate - OPIM, OPEX, IMEX, etc. CSNBKGN

Key Generate - EX, IM, OP CSNBKGN

Key Generate - CVARs CSNBKGN

Key Generate - SINGLE-R CSNBKGN

Key Import CSNBKIM

Key Part Import - first key part CSNBKPI

Key Part Import - middle and final CSNBKPI

Key Translate CSNBKTR

MAC Generate CSNBMGN

MAC Verify CSNBMVR

PKA Decrypt CSNDPKD

PKA Encrypt CSNDPKE

PKA Key Generate CSNDPKG

PKA Key Generate - Clear CSNDPKG

PKA Key Generate - Clone CSNDKPG

PKA Key Import CSNDPKI

PKA Key Token Change CSNDKTC

Prohibit Export CSNBPEX

Retained Key Delete CSNDRKD

Retained Key List CSNDRKL

Secure Key Import - IM CSNBSKI or CSNBSKM

Secure Key Import - OP CSNBSKI or CSNBSKM

Secure Messaging for Keys CSNBSKY

Secure Messaging for PINs CSNBSPN

SET Block Compose CSNDSBC

SET Block Decompose CSNDSBD

Appendix H. Access Control Points and Callable Services 449

SET Block Decompose - PIN ext IPINENC CSNDSBD

SET Block Decompose - PIN ext OPINENC CSNDSBD

Symmetric Key Export - PKCS-1.2 CSNDSYX

Symmetric Key Export - ZERO-PAD CSNDSYX

Symmetric Key Generate - PKA92 CSNDSYG

Symmetric Key Generate - PKCS-1.2 CSNDSYG

Symmetric Key Generate - ZERO-PAD CSNDSYG

Symmetric Key Import - PKA92 KEK CSNDSYI

Symmetric Key Import - PKA92 PIN Key CSNDSYI

Symmetric Key Import - PKCS-1.2 CSNDSYI

Symmetric Key Import - ZERO-PAD CSNDSYI

UKPT - PIN Verify, PIN Translate CSNBPVR and CSNBPTR

Notes:

1. To use PKA Key Generate - Clear or PKA Key Generate - Clone, the PKA Key
Generate access control point must be enabled or the callable service will fail.

2. To use SET Block Decompose - PIN ext IPINENC or PIN ext OPINENC, the
SET Block Decompose access control point must be enabled or the callable
service will fail.

3. Diversified Key Generate - single length or same halves requires either
Diversified Key Generate - TDES-ENC or Diversified Key Generate -
TDES-DEC be enabled.

450 z/OS V1R3.0 ICSF Application Programmer’s Guide

||

Appendix I. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1997, 2002 451

452 z/OS V1R3.0 ICSF Application Programmer’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2002 453

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS Integrated Cryptographic Service
Facility.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
AS/400
CICS
ES/3090
ES/9000
IBM
IBMLink
Multiprise
MVS
MVS/ESA
MVS/SP
OS/390
Parallel Sysplex
Personal Security
Processor Resource/Systems Manager
PR/SM
RACF
Resource Link
RMF
S/370
S/390
S/390 Parallel Enterprise Server
System/390
VTAM
3090

454 z/OS V1R3.0 ICSF Application Programmer’s Guide

zSeries
z/OS

The e-business logo is a trademark of IBM.

The following terms are trademarks of other companies:

BSAFE RSA Data Security, Incorporated

MasterCard MasterCard International, Incorporated

Netscape Netscape Communications Corporation

SET SET Secure Electronic Transaction, LLC

UNIX The Open Group

VISA VISA International Service Association

Other company, product, and service names may be trademarks or service marks
of others.

Notices 455

456 z/OS V1R3.0 ICSF Application Programmer’s Guide

Index

Numerics
3621 PIN block format 212, 420
3624 PIN block format 212, 420
4700-PAD processing rule 166, 174
4704-EPP PIN block format 212

A
accessibility 451
accessing

callable service 8
invocation requirements 8

affinity (IEAAFFN callable service) 8
AKEK key type 20
ALET (alternate entry point)

format 4
algorithm 29

3624 PIN generation 422
3624 PIN verification 425
DES 13, 29
GBP PIN generation 423
GBP PIN verification 427
GBP-PIN 238
GBP-PINO 238
IBM-PIN 238
IBM-PINO 238
PIN offset generation 424
PIN, detailed 422
PIN, general 31
PVV generation 428
PVV verification 429
VISA PIN 428
VISA-PVV 224, 238

ANSI 9.9-1 algorithm 189
ANSI key-encrypting key (AKEK) 20
ANSI X3.106 processing rule 430
ANSI X9.17 EDC generate callable service (CSNAEGN)

format 317
overview 28
parameters 317
syntax 317

ANSI X9.17 key export callable service (CSNAKEX)
format 319
overview 28
parameters 319
syntax 319

ANSI X9.17 key import callable service (CSNAKIM)
format 324
overview 28
parameters 324
syntax 324

ANSI X9.17 key management 317
overview 27

ANSI X9.17 key translate callable service (CSNAKTR)
format 328
overview 28
parameters 328

ANSI X9.17 key translate callable service (CSNAKTR)
(continued)

syntax 328
ANSI X9.17 key-encrypting key 18
ANSI X9.17 transport key partial notarize callable

service (CSNATKN)
overview 28

ANSI X9.17 transport key partial notorize (CSNATKN)
format 333
parameters 333
syntax 333

ANSI X9.19 optional double MAC procedure 189
ANSI X9.23 processing rule 158, 166, 174, 430
ANSI X9.8 235
ANSI X9.8 PIN block format 419
ASCII to EBCDIC conversion

table 445
authenticating messages 189

C
c-variable encrypting key identifier parameter

cryptographic variable encipher callable service 69
call

successful 10
unsuccessful 10

callable service
ANSI X9.17 EDC generate (CSNAEGN) 28, 317
ANSI X9.17 key export (CSNAKEX) 28, 319
ANSI X9.17 key import (CSNAKIM) 28, 324
ANSI X9.17 key translate (CSNAKTR) 28, 328
ANSI X9.17 transport key partial notarize

(CSNATKN) 28
ANSI X9.17 transport key partial notorize

(CSNATKN) 333
character/nibble conversion (CSNBXBC and

CSNBXCB) 305
ciphertext 39
ciphertext translate (CSNBCTT or CSNBCTT1) 159
clear key import (CSNBCKI) 21, 61
clear PIN encrypt (CSNBCPE) 32, 214
clear PIN generate (CSNBPGN) 33, 217
clear PIN generate alternate (CSNBCPA) 32, 220
code conversion (CSNBXAE) 34
code conversion (CSNBXBC) 34
code conversion (CSNBXCB) 34
code conversion (CSNBXEA and CSNBXAE) 307
code conversion (CSNBXEA) 34
coding examples 399

Assembler H 403
C 399
COBOL 401
PL/1 405

control vector generate (CSNBCVG) 21, 63
control vector translate callable service

(CSNBCVT) 21, 65
cryptographic variable encipher (CSNBCVE) 21, 68
CSFxxxx format 3

© Copyright IBM Corp. 1997, 2002 457

callable service (continued)
CSNBxxxx format 3
data key export (CSNBDKX) 21, 70
data key import (CSNBDKM) 22, 72
decipher (CSNBDEC or CSNBDEC1) 162
decode (CSNBDCO) 168
definition 3, 13
digital signature generate (CSNDDSG) 49, 265
digital signature verify (CSNDDSV) 49, 269
diversified key generate (CSNBDKG) 22, 74
encipher (CSNBENC or CSNBENC1) 170
encode (CSNBECO) 177
encrypted PIN generate (CSNBEPG) 33, 226
encrypted PIN translate (CSNBPTR) 33, 230
encrypted PIN verification (CSNBPVR) 33
encrypted PIN verify (CSNBPVR) 236
format 311, 315
IEAAFFN (affinity) 8
installation-defined 13
invoking a 3
key export (CSNBKEX) 22, 77
key generate (CSNBKGN) 22, 35, 82
key import (CSNBKIM) 22, 92
key part import (CSNBKPI) 22, 97
key record create (CSNBKRC) 25, 100
key record delete (CSNBKRD) 25, 101
key record read (CSNBKRR) 25, 102
key record write (CSNBKRW) 25, 104
key test (CSNBKYT and CSNBKYTX) 22
key test and key test extended (CSNBKYT and

CSNBKYTX) 105
key token build (CSNBKTB) 23, 109
key translate (CSNBKTR) 23, 118
link edit step 11
MAC generate (CSNBMGN or CSNBMGN1) 191
MAC generation (CSNBMGN or CSNBMGN1) 30
MAC verification (CSNBMVR or CSNBMVR1) 30
MAC verify (CSNBMVR or CSNBMVR1) 195
MDC generate (CSNBMDG or CSNBMDG1) 200
MDC generation (CSNBMDG or CSNBMDG1) 31
multiple clear key import (CSNBCKM) 23, 120
multiple secure key import (CSNBSKM) 23, 122
one-way hash generate (CSNBOWH and

CSNBOWH1) 31, 204
overview 3
PCI interface (CSFPCI) 311
PKA decrypt (CSNDPKD) 25
PKA encrypt (CSNDPKE) 26
PKA key generate (CSNDPKG) 49, 273
PKA key import (CSNDPKI) 50, 277
PKA key token build (CSNDPKB) 50, 279
PKA key token change (CSNDKTC) 50, 289
PKA public key extract (CSNDPKX) 50, 291
PKDS record create (CSNDKRC) 293
PKDS record delete (CSNDKRD) 294
PKDS record read (CSNDKRR) 296
PKDS record write (CSNDKRW) 297
PKSC interface (CSFPKSC) 315
prohibit export (CSNBPEX) 23, 133
prohibit export extended (CSNBPEXX) 23, 134
random number generate (CSNBRNG) 23, 135

callable service (continued)
retained key delete (CSNDRKD) 299
retained key list (CSNDRKL) 301
secure key import (CSNBSKI) 23, 137
secure messaging for keys (CSNBSKY) 242
secure messaging for PINs (CSNBSPN) 245
security considerations 8
sequences 34
SET block compose (CSNDSBC) 52, 249
SET block decompose (CSNDSBD) 52, 253
symmetric key decipher (CSNBSYD) 178
symmetric key encipher (CSNBSYE) 183
symmetric key export (CSNDSYX) 24, 140
symmetric key generate (CSNDSYG) 24, 143
symmetric key import (CSNDSYI) 24, 147
syntax 3
transform CDMF key (CSNBTCK) 24, 151
translating ciphertext 29
User derived key (CSFUDK) 153
using key types and key forms 9
VISA CVV service generate (CSNBCSG) 258
VISA CVV service verify (CSNBCSV) 261
with ALETs (alternate entry point) 4
X9.9 data editing (CSNB9ED) 34, 308

CBC processing rule 158, 166, 174
CDMF

overview 26
CDMF key, transforming

algorithm 442
callable service 151

chaining vector length parameter
one-way hash generate callable service 206

chaining vector parameter
decipher callable service 167
encipher callable service 175
MAC generate callable service 194
MAC verify callable service 199
MDC generate callable service 203
one-way hash generate callable service 207

changing control vectors 393
character/nibble conversion callable service (CSNBXBC

and CSNBXCB)
format 305
parameters 305
syntax 305

character/nibble conversion callable services
(CSNBXBC and CSNBXCB)

overview 34
choosing between

CSNBCTT and CSNBCTT1 159
CSNBDEC and CSNBDEC1 163
CSNBENC and CSNBENC1 171
CSNBMDG and CSNBMDG1 200
CSNBMGN and CSNBMGN1 191
CSNBMVR and CSNBMVR1 196

cipher block chaining (CBC) 157
ciphertext

cryptographic variable encipher callable service 70
deciphering 29, 157
encoding 177
field 168, 176

458 z/OS V1R3.0 ICSF Application Programmer’s Guide

ciphertext (continued)
translating 29, 159

ciphertext id parameter
decipher callable service 167
encipher callable service 176

ciphertext parameter
decipher callable service 165
decode callable service 169
encipher callable service 176
encode callable service 178

ciphertext translate callable service (CSNBCTT or
CSNBCTT1)

format 159
parameters 160
syntax 159
using 39

clear key
deciphering data with 168
definition 20
enciphering 137
enciphering data with 177
encoding and decoding data with 29
protecting 157

clear key import callable service (CSNBCKI)
format 61
overview 21
parameters 61
syntax 61

clear key length parameter
multiple clear key import callable service 122, 124

clear key parameter
clear key import callable service 62
decode callable service 169
encode callable service 178
multiple clear key import callable service 122, 124
secure key import callable service 138

clear PIN encrypt callable service (CSNBCPE)
format 214
syntax 214

clear PIN encrypt service (CSNBCPE)
parameters 215

clear PIN generate alternate callable service
(CSNBCPA)

format 220
overview 32
parameters 220
syntax 220

clear PIN generate callable service (CSNBPGN)
format 217
parameters 217
syntax 217

clear PIN generate key identifier parameter 222
clear PIN generate callable service 218

clear text id parameter
decipher callable service 167
encipher callable service 176

clear text parameter
decipher callable service 167
decode callable service 169
encipher callable service 173
encode callable service 178

code conversion callable service (CSNBXEA and
CSNBXAE)

format 307
parameters 307
syntax 307

code conversion callable services (CSNBXEA and
CSNBXAE)

overview 34
code table parameter

character/nibble conversion callable service 306
code conversion callable service 308

coding examples 399
Assembler H 403
C 399
COBOL 401
PL/1 405

Commercial Data Masking Facility (CDMF) 157
control information

for digital signature generate 267
for digital signature verify 271
for diversified key generate 75
for key test 107
for key token build 112
for MAC generate 193
for MAC verify 198
for MDC generate 202
for multiple clear key import 122
for multiple secure key import 124
for one-way hash generate 206
for PKA key token build 281
for symmetric key encipher 180, 184
for symmetric key generate 144
for symmetric key import 149
for user derived key 154

control vector
description 383
value 383

control vector generate (CSNBCVG)
parameters 63

control vector generate callable service (CSNBCVG)
format 63
overview 21
syntax 63

control vector parameter
control vector generate callable service 65

control vector translate callable service (CSNBCVT)
format 65
overview 21
parameters 66
syntax 65

control vector, description of 14, 16
control vectors, changing 393
cryptographic feature

description xxi
cryptographic key data set (CKDS)

held keys 18
storing keys 21, 24, 61

cryptographic variable encipher (CSNBCVE)
parameters 69

Index 459

cryptographic variable encipher callable service
(CSNBCVE)

format 68
overview 21
syntax 68

CSFPCI callable service 311
CSFPKSC callable service 315
CSFUDK callable service 153
CSFxxxx format 3
CSNAEGN callable service 317
CSNAKEX callable service 319, 324
CSNAKTR callable service 328
CSNATKN callable service 333
CSNB9ED callable service 308
CSNBCKI callable service 61
CSNBCKM callable service 120
CSNBCPA callable service 220
CSNBCPE callable service 214
CSNBCSG callable service 258
CSNBCSV callable service 261
CSNBCTT or CSNBCTT1 callable service 159
CSNBCVE callable service 68
CSNBCVG callable service 63
CSNBCVT callable service 65
CSNBDCO callable service 168
CSNBDEC or CSNBDEC1 callable service 162
CSNBDKG callable service 74
CSNBDKM callable service 72
CSNBDKX callable service 70
CSNBECO callable service 177
CSNBENC or CSNBENC1 callable service 170
CSNBEPG callable service 226
CSNBKEX callable service 77
CSNBKGN callable service 82
CSNBKIM callable service 92
CSNBKPI callable service 97
CSNBKRC callable service 100
CSNBKRD callable service 101
CSNBKRR callable service 102
CSNBKRW callable service 104
CSNBKTB callable service 109
CSNBKTR callable service 118
CSNBKYT callable service 105
CSNBKYTX callable service 105
CSNBMDG or CSNBMDG1 callable service 200
CSNBMGN or CSNBMGN1 callable service 191
CSNBMVR or CSNBMVR1 callable service 195
CSNBOWH and CSNBOWH1 callable services 204
CSNBPEX callable service 133
CSNBPEXX callable service 134
CSNBPGN callable service 217
CSNBPTR callable service 230
CSNBPVR callable service 236
CSNBRNG callable service 135
CSNBSKI callable service 137
CSNBSKM callable service 122
CSNBSKY callable service 242
CSNBSPN callable service 245
CSNBSYD callable service 178
CSNBSYE callable service 183
CSNBTCK callable service 151

CSNBXAE callable service 307
CSNBXBC callable service 305
CSNBXCB callable service 305
CSNBXEA callable service 307
CSNBxxxx format 3
CSNDDSG callable service 265
CSNDDSV callable service 269
CSNDKRC callable service 293
CSNDKRD callable service 294
CSNDKRR callable service 296
CSNDKRW callable service 297
CSNDKTC callable service 289
CSNDPKB callable service 279
CSNDPKD callable service 126
CSNDPKE callable service 130
CSNDPKG callable service 273
CSNDPKI callable service 277
CSNDPKX callable service 291
CSNDRKD callable service 299
CSNDRKL callable service 301
CSNDSBC callable service 249
CSNDSBD callable service 253
CSNDSYG callable service 143
CSNDSYI callable service 147
CSNDSYX callable service 140
CUSP processing rule 166, 174, 431
CUSP/IPS processing rule 158
CUSP/PCF

key separation 14
keys 18
macros 6
migration consideration 6

D
data

deciphering 162
enciphering 170
enciphering and deciphering 28
encoding and decoding 29
protecting 157

data array parameter
clear PIN generate alternate callable service 224
clear PIN generate callable service 219
encrypted PIN generate callable service 228
encrypted PIN verify callable service 240

data integrity
ensuring 29
verifying 189

data key
exporting 70
importing 61
reenciphering 70

data key export callable service (CSNBDKX)
format 70
overview 21
parameters 70
syntax 70

data key import callable service (CSNBDKM)
format 72
overview 22

460 z/OS V1R3.0 ICSF Application Programmer’s Guide

data key import callable service (CSNBDKM)
(continued)

parameters 72
syntax 72

DATA key type 20
data length parameter

diversified key generate callable service 76
data space

callable services that use data in data spaces 4
data-encrypting key 17
data-translation key 17, 159
DATAM key type 20
DATAMV key type 20
DATAXLAT key type 20
decipher callable service (CSNBDEC or CSNBDEC1)

format 164
syntax 164

deciphering
data 157, 162
data with clear key 168
multiple 433

decode callable service (CSNBDCO)
format 168
parameters 168
syntax 168

DES algorithm 13, 29, 157
DES enciphered key token parameter 146
DES external key token format 366
DES internal key token format 365
destination identifier 27
digital signature generate callable service (CSNDDSG)

format 265
overview 49
parameters 265
syntax 265

digital signature verify callable service (CSNDDSV)
format 269
overview 49
parameters 269
syntax 269

disability 451
diversified key generate callable service (CSNBDKG)

format 74
overview 22
parameters 74
syntax 74

double-length key
key length 85
multiple decipherment 436
multiple encipherment 435
using 18

DSS private external key token 373
DSS private internal key token 379
DSS public token 369
dynamic CKDS update callable services

description 24

E
EBCDIC to ASCII conversion

table 445

ECI-1 235
ECI-2 PIN block format 212, 420
ECI-3 PIN block format 212, 420
ECI-4 235
EDC

generating 317
electronic code book (ECB) 157
encipher callable service (CSNBENC or CSNBENC1)

format 172
parameters 172
syntax 172

enciphered
key 82, 140, 157
under master key 92

enciphering
data 157, 170
multiple 433
string with clear key 177

encode callable service (CSNBECO)
format 177
parameters 177
syntax 177

encrypted PIN block parameter
clear PIN generate alternate callable service 222
encrypted PIN verify callable service 238

encrypted PIN generate callable service (CSNBEPG)
format 226
syntax 226

encrypted PIN generate service (CSNBEPG)
parameters 226

encrypted PIN translate callable service
(CSNBPTR) 230

extraction rules 421
format 230
parameters 230
syntax 230

encrypted PIN verification callable service (CSNBPVR)
extraction rules 421

encrypted PIN verify callable service (CSNBPVR)
format 236
parameters 236
syntax 236

ensuring data integrity and authenticity 29
error detection code (EDC)

generating 317
EX key form 36
examples of callable services 399
EXEX key form 38
exit data 7
exit data length 7
exit, installation 7
exportable key form 15

definition 14
generating 36
value 83

exporter key identifier parameter
data key export callable service 71
key export callable service 81

EXPORTER key type 20
exporter key-encrypting key 18

any DES key 77

Index 461

exporter key-encrypting key (continued)
enciphering data key 70

external key token 7, 16, 55
DES 366
PKA 56

DSS private 373
RSA private 370

extraction rules, PIN 421

F
FEATURE=CRYPTO keyword

SCHEDULE macro 8
form parameter

random number generate callable service 136
format control 212
formats, PIN 32
functions of

cryptographic keys 13
ICSF 13

G
GBP-PIN algorithm 238
GBP-PINO algorithm 238
generated key identifier 1 parameter

key generate callable service 89
generated key identifier 2 parameter

key generate callable service 90
generated key identifier parameter

diversified key generate callable service 77
generating an error detection code (EDC) 317
generating encrypted keys 82
generating key identifier parameter

diversified key generate callable service 76
German Banking Pool PIN algorithm 423

H
hash length parameter

digital signature generate callable service 268
digital signature verify callable service 271
one-way hash generate callable service 207

hash parameter
digital signature generate callable service 268
digital signature verify callable service 271
one-way hash generate callable service 207

high-level languages 3

I
IBM 3624 217, 236
IBM 4700 processing rule 158, 430
IBM GBP 217, 236
IBM-4700 PIN block format 420
IBM-PIN algorithm 238
IBM-PINO algorithm 238
ICSF

functions 13
overview 13

IEAAFFN callable service (affinity) 8
IM key form 36
IMEX key form 38
IMIM key form 37
importable key form 15

definition 14
generating 36
value 83

imported key identifier length parameter
multiple secure key import callable service 126

imported key identifier parameter
multiple secure key import callable service 126

importer key identifier parameter
key import callable service 96
PKA key import callable service 278
secure key import callable service 139

IMPORTER key type 20
importer key-encrypting key 18

enciphering clear key 137, 139
importing a non-exportable key 134
improving performance using partial notarization 441
INBK PIN 211, 217
INBK-PIN 236
initial chaining vector (ICV)

description 157, 430
initialization vector in parameter

ciphertext translate callable service 161
initialization vector out parameter

ciphertext translate callable service 161
initialization vector parameter

cryptographic variable encipher callable service 70
decipher callable service 165
encipher callable service 173
key token build callable service 115

input data transport key 159
input KEK key identifier parameter

key translate callable service 119
input PIN profile parameter

clear PIN generate alternate callable service 222
encrypted PIN translate callable service 231
encrypted PIN verify callable service 237

input PIN-encrypting key identifier parameter
encrypted PIN translate callable service 231
encrypted PIN verify callable service 237

installation exit
post-processing 7
preprocessing 7

installation-defined callable service 13
Integrated Cryptographic Service Facility (ICSF)

description xxi
Interbank PIN 44, 211, 217, 236
internal key token 7, 15, 55, 56

DES 365
PKA

DSS private 379
RSA private 374, 376

invocation requirements 8
IPINENC key type 20, 231
IPS processing rule 166, 174, 432
ISO-0 PIN block format 212
ISO-1 PIN block format 212, 420

462 z/OS V1R3.0 ICSF Application Programmer’s Guide

ISO-2 PIN block format 420

J
JCL statements, sample 11

K
KEK key identifer parameter

control vector translate callable service 66
KEK key identifier 1 parameter

key generate callable service 89
KEK key identifier 2 parameter

key generate callable service 89
KEK key identifier parameter

key test callable service 108
prohibit export extended callable service 135
transform CDMF key callable service 152

key array parameter
control vector translate callable service 66

key array right parameter
control vector translate callable service 67

key encrypting key identifier parameter 145
key export callable service (CSNBKEX)

format 77
overview 22
parameters 77
syntax 77

key flow 15
key form

combinations for a key pair 91
combinations with key type 91
definition 14
exportable 14, 15
importable 14, 15
operational 14
value 83

key form parameter
key generate callable service 83
secure key import callable service 139

key generate callable service (CSNBKGN)
format 82
overview 21
parameters 82
syntax 82
using 35

key generator utility program (KGUP)
description 21

key identifier 7
PKA keys 55

key identifier in parameter
ciphertext translate callable service 160

key identifier length parameter
multiple clear key import callable service 122

key identifier out parameter
ciphertext translate callable service 161

key identifier parameter
clear key import callable service 63
decipher callable service 165
diversified key generate callable service 77
encipher callable service 173

key identifier parameter (continued)
key test callable service 108
MAC generate callable service 193
MAC generation callable service 197
multiple clear key import callable service 122
secure key import callable service 140

key import callable service (CSNBKIM)
format 92
overview 22
parameters 92
syntax 92

key label 7, 55
security considerations 8

key length parameter
key generate callable service 85

key management
ANSI X9.17 standard 317

key pair 91
key part import callable service (CSNBKPI)

format 97
overview 22
parameters 97
syntax 97

key record create callable service (CSNBKRC)
format 100
overview 25
parameters 100
syntax 100

key record delete callable service (CSNBKRD)
format 101
overview 25
parameters 101
syntax 101

key record read callable service (CSNBKRR)
format 102
overview 25
parameters 102
syntax 102

key record write callable service (CSNBKRW)
format 104
overview 25
parameters 104
syntax 104

key test and key test extended callable service
(CSNBKYT and CSNBKYTX)

parameters 105
key test and key test extended callable services

(CSNBKYT and CSNBKYTX)
format 105
syntax 105

key test callable service (CSNBKYT and CSNBKYTX)
overview 22

key token 15, 55
DES

external 366
internal 365
null 367

DES internal 365
external 16
internal 15, 56
null 16

Index 463

key token (continued)
PKA 52

DSS private external 373
DSS private internal 379
DSS public 369
null 381
RSA 1024-bit modulus-exponent private

external 370
RSA 1024-bit private internal 376
RSA 2048-bit Chinese remainder theorem private

external 371
RSA 2048-bit Chinese remainder theorem private

internal 378
RSA private external 370
RSA private internal 374
RSA public 368

PKA external 56
key token build callable service (CSNBKTB)

format 109
overview 23
parameters 109
syntax 109

key translate (CSNBKTR)
parameters 119

key translate callable service (CSNBKTR)
format 119
overview 23
syntax 119

key type 1 37, 38
key type 1 parameter

key generate callable service 86
key type 2 37, 38
key type 2 parameter

key generate callable service 86
key type parameter

key export callable service 78
key import callable service 94
key token build callable service 110
secure key import callable service 138
user derived key callable service 154

key value structure length parameter 282
key value structure parameter 282
key-encrypting key 18

definition 14
description 18
exporter 70, 77
importer 137

keyboard 451
keys

ANSI X9.17 key-encrypting 18
changing CDMF DATA key to transformed shortened

DES 151
clear 20, 137
control vector 14, 16
creating 9
cryptographic, functions of 13
data key

exporting 70
importing 61
reenciphering 70

data-encrypting 17

keys (continued)
data-translation 17
double-length 37, 38
enciphered 140
exporter key-encrypting 18
forms 14
generating

encrypted 82
values for keys 23

held in applications 18
held in CKDS 18
importer key-encrypting 18
key-encrypting 18
list of types 20
MAC 17
managing 61
master key variant 14
master, DES 17
multiple decipherment/encipherment 433
pair 37, 38
parity 61
PIN 17
PIN-encrypting key 230
PKA master 47

Key Management Master Key (KMMK) 47
Signature Master Key (SMK) 47

possible forms 22
protecting 157
reenciphered 92
reenciphering 77
separation 13
single-length 36, 37
transport 18
transport key variant 14
types of 17
using 9
VISA PVV

generating 220

L
languages, high-level 3
large data object 431
linking callable services 11

M
MAC

generation callable service 30
keys 17
length keywords 193, 198
managing 29
verification callable service 30

MAC generate callable service (CSNBMGN or
CSNBMGN1)

format 192
parameters 192
syntax 192

MAC key type 20
mac parameter

MAC generate callable service 194

464 z/OS V1R3.0 ICSF Application Programmer’s Guide

mac parameter (continued)
MAC verify callable service 199

MAC verify callable service (CSNBMVR or CSNBMVR1)
format 196
parameters 196
syntax 196

MACVER key type 20
managing keys 61
mask array left parameter

control vector translate callable service 67
mask array preparation 393
mask array right parameter

control vector translate callable service 67
master key

changing
possible effect on internal key tokens 16

enciphered key 92
master key variant 14
master key, DES 17
MAXLEN keyword 161, 165, 173
MDC

generate callable service 31
length keywords 202
managing 31

mdc parameter
MDC generate callable service 203

message authentication
definition 29, 30

message authentication code (MAC)
description 189
generating 189, 191
verifying 189, 195

messages
authenticating 189

migration consideration
return codes from CUSP/PCF macros 6

mode, special secure 9
modes of operation 157
modification detection

definition 31
modification detection code (MDC)

generating 190, 200
verifying 190

multiple
decipherment 433
encipherment 433

multiple clear key import callable service
(CSNBCKM) 120

format 120
overview 23
parameters 121
syntax 120

multiple node network 159
multiple secure key import callable service

(CSNBSKM) 122
format 123
overview 23
parameters 123
syntax 123

N
notarization 27
Notices 453
null key token 16

format 367, 381
number, generated 135

O
offsetting 27, 441
one-way hash generate callable service (CSNBOWH

and CSNBOWH1)
format 204
overview 31
parameters 204
syntax 204

OP key form 36
operational key form 14

definition 14
generating 35
value 83

OPEX key form 37
OPIM key form 37
OPINENC key type 20, 231
OPOP key form 37
origin identifier 27
output chaining vector (OCV)

description 158, 430
output data transport key 159
output KEK key identifier parameter

key translate callable service 120
output PIN profile parameter

encrypted PIN translate callable service 234
output PIN-encrypt translation key identifier parameter

encrypted PIN translate callable service 231
overview of callable services 3

P
pad character parameter

encipher callable service 175
key token build callable service 115

pad digit 213
format 213

padding schemes 163, 171
pair of keys 37, 38
PAN data in parameter

encrypted PIN translate callable service 232
PAN data out parameter

encrypted PIN translate callable service 234
PAN data parameter

clear PIN encrypt callable service 216
clear PIN generate alternate callable service 222
encrypted PIN generate callable service 229
encrypted PIN verify callable service 238

parameter
attribute definitions 4
definitions 6
direction 5
exit data 7

Index 465

parameter (continued)
exit data length 7
reason code 6
return code 6
type 5

parity of key 61, 137
adjusting 107
EVEN 136
ODD 136

partial notarization 27, 441
calculation for a double-length AKEK 442
calculation for a single-length AKEK 442

PCI interface callable service (CSFPCI)
parameters 311
syntax 311

performance considerations 8
personal account number (PAN)

for encrypted PIN translate 232
for encrypted PIN verify 238

personal authentication
definition 31

personal identification number (PIN)
3624 PIN generation algorithm 422
3624 PIN verification algorithm 425
algorithm value 224, 238
algorithms 31, 211, 217
block format 211, 230
clear PIN encrypt callable service 32
clear PIN generate alternate callable service 32,

220
definition 31
description 209
detailed algorithms 422
encrypted generation callable service 33
encrypting key 211, 230
extraction rules 421
formats 32
GBP PIN verification algorithm 427
generating 210, 217

from encrypted PIN block 210
generation callable service 33, 217
German Banking Pool PIN algorithm 423
keys 17
managing 31
PIN offset generation algorithm 424
PVV generation algorithm 428
PVV verification algorithm 429
translating 211
translation callable service 33, 230
translation of, in networks 210
using 209
verification callable service 33, 236
verifying 210, 236
VISA PIN algorithm 428

PIN block format
3621 420
3624 420
additional names 235
ANSI X9.8 419
detail 419
ECI-2 420

PIN block format (continued)
ECI-3 420
format values 212
IBM-4700 420
ISO-1 420
ISO-2 420
VISA-2 420
VISA-3 420

PIN block in parameter
encrypted PIN translate callable service 232

PIN block out parameter
encrypted PIN translate callable service 235

PIN block variant constant (PBVC)
description 212, 225
for clear PIN generate alternate 225
for encrypted PIN translate 235
for PIN verification 241

PIN check length parameter 224
clear PIN encrypt callable service 216
clear PIN generate callable service 219
PIN verify callable service 240

PIN encryption key identifier parameter 222
PIN encryting key identifier parameter

clear PIN encrypt callable service 215
PIN generating key identifier parameter

encrypted PIN generate callable service 227
PIN keys 17
PIN length parameter

clear PIN generate callable service 216, 219
encrypted PIN generate callable service 228

PIN notation 419
PIN profile 212

description 231, 237
PIN profile parameter 222

encrypted PIN generate callable service 229
PIN validation value (PVV) 217
PIN verifying key identifier parameter

encrypted PIN verify callable service 237
PINGEN key type 20
PINVER key type 20
PKA decrypt callable service (CSNDPKD)

overview 25
PKA decrypt callable servicec 126
PKA encrypt callable service (CSNDPKE)

overview 26
PKA encrypt callable servicec 130
PKA external key token 56
PKA key generate callable service (CSNDPKG)

format 273
parameters 273
syntax 273

PKA key import callable service (CSNDPKI)
format 277
overview 50
parameters 277
syntax 277

PKA key token 52
external 56
record format

DSS private external 373
DSS private internal 379

466 z/OS V1R3.0 ICSF Application Programmer’s Guide

PKA key token (continued)
record format (continued)

DSS public 369
RSA 1024-bit modulus-exponent private

external 370
RSA 1024-bit private internal 376
RSA 2048-bit Chinese remainder theorem private

external 371
RSA 2048-bit Chinese remainder theorem private

internal 378
RSA private external 370
RSA private internal 374
RSA public 368

PKA key token build callable service (CSNDPKB)
format 279
overview 50
parameters 279
syntax 279

PKA key token change (CSNDKTC)
parameters 289

PKA key token change callable service
(CSNDKTC) 289

overview 50
PKA master key 48
PKA private key identifier length parameter 268
PKA private key identifier parameter 268
PKA public key extract callable service (CSNDPKX)

format 291
overview 50
parameters 291
syntax 291

PKA public key identifier length parameter 271
PKA public key identifier parameter 271
PKA92 key format and encryption process 439
PKDS record create callable service (CSNDKRC) 293

format 293
parameters 293
syntax 293

PKDS record delete callable service (CSNDKRD) 294
format 294
parameters 294
syntax 294

PKDS record read callable service (CSNDKRR) 296
format 296
parameters 296
syntax 296

PKDS record write callable service (CSNDKRW) 297
format 298
parameters 298
syntax 298

PKSC interface 315
PKSC interface callable service (CSFPKSC)

parameters 315
syntax 315

plaintext
enciphering 157
encoding 177
field 168, 176

plaintext parameter
cryptographic variable encipher callable service 69

post-processing exit 7

preprocessing exit 7
privacy 28
private external key token

DSS 373
RSA 370

private internal key token
DSS 379
RSA 374, 376

private key name length parameter 287
private key name parameter 287
processing rule

4700-PAD 166, 174
ANSI X3.106 430
ANSI X9.23 158, 166, 174, 430
CBC 158, 166, 174
cipher 430
cipher last block 431
CUSP 431
CUSP/IPS 158, 166, 174
decipher 166
description 158
encipher 174
GBP-PIN 218
GBP-PINO 218
IBM 4700 158, 430
IBM-PIN 218
IBM-PINO 218
INBK-PIN 218
IPS 432
recommendations for encipher 175
segmenting 431
VISA-PVV 218

prohibit export (CSNBPEX) 133
prohibit export callable service (CSNBPEX)

format 133
overview 23
syntax 133

prohibit export extended callable service (CSNBPEXX)
format 134
overview 23
parameters 134
syntax 134

protecting data and keys 157
public key token

DSS 369
RSA 368

R
RACF authorization 8
random number generate callable service (CSNBRNG)

format 135
overview 23
parameters 135
syntax 135

random number parameter
key test callable service 108
random number generate callable service 136

reason codes 6, 10
reason codes for ICSF

for return code 0 (0) 336

Index 467

reason codes for ICSF (continued)
for return code 10 (16) 355
for return code 4 (4) 336
for return code 8 (8) 338
for return code C (12) 351

reason codes for TSS
for return code 10 (16) 363
for return code 4 (4) 356
for return code 8 (8) 357
for return code C (12) 363

recommendations for encipher processing rules 175
record chaining 158, 432
reenciphered

key 92
reenciphering

data-encrypting key 70
PIN block 230

reserved parameter
control vector generate callable service 65, 120

retained key delete callable service (CSNDRKD)
format 299
overview 51
parameters 299
syntax 299

retained key list callable service (CSNDRKL)
format 301
overview 51
parameters 301
syntax 301

retained private keys
overview 51

return codes 6, 10
from CUSP and PCF macros

migration consideration 6
return codes for ICSF

description 335
return codes for TSS

description 355
returned PVV parameter 225
returned result parameter

clear PIN generate callable service 220
Rivest-Shamir-Adleman (RSA) algorithm 47
RSA 1024-bit private internal key token 376
RSA algorithm 47
RSA enciphered key length parameter

symmetric key generate callable service 146
symmetric key import callable service 149

RSA enciphered key parameter
symmetric key generate callable service 146
symmetric key import callable service 149

RSA private external Chinese remainder theorem key
token 371

RSA private external key token 370
RSA private external modulus-exponent key token 370
RSA private internal Chinese remainder theorem key

token 378
RSA private internal key token 374
RSA private key identifier 149
RSA private key identifier length 149
RSA public key identifier length parameter

for symmetric key generate 145

RSA public key identifier parameter 145
RSA public token 368
rule array count parameter

clear PIN encrypt callable service 215
Clear PIN encrypt callable service 66, 227
clear PIN generate alternate callable service 222
clear PIN generate callable service 218
control vector translate callable service 67
decipher callable service 165
digital signature generate callable service 267
digital signature verify callable service 270
diversified key generate callable service 75
encipher callable service 174
encrypted PIN translate callable service 232
encrypted PIN verify callable service 238
key test callable service 107
key token build callable service 112
MAC generate callable service 193
MAC generation callable service 198
MDC generate callable service 202
one-way hash generate callable service 205
PKA key generate callable service 274
PKA key import callable service 278
PKA key token build callable service 281
PKA public key extract callable service 291
symmetric key export callable service 141
symmetric key generate callable service 144
symmetric key import callable service 148
transform CDMF key callable service 152
user derived key callable service 154

rule array parameter
clear PIN encrypt callable service 215
clear PIN generate alternate callable service 223
clear PIN generate callable service 218
control vector generate callable service 64
control vector translate callable service 67
decipher callable service 166
digital signature generate callable service 267
digital signature verify callable service 271
diversified key generate callable service 75
encipher callable service 174
encrypted PIN generate callable service 227
encrypted PIN translate callable service 232
encrypted PIN verify callable service 238
key test callable service 107
key token build callable service 112
MAC generate callable service 193
MAC generation callable service 198
MDC generate callable service 202
one-way hash generate callable service 206
PKA key generate callable service 275
PKA key import callable service 278
PKA key token build callable service 281
PKA public key extract callable service 292
symmetric key export callable service 141
symmetric key generate callable service 144
symmetric key import callable service 149
transform CDMF key callable service 152
user derived key callable service 154

468 z/OS V1R3.0 ICSF Application Programmer’s Guide

S
sample JCL statements 11
SCHEDULE macro

FEATURE=CRYPTO keyword 8
SCSFMOD0 module 11
secure key import callable service (CSNBSKI)

format 137
overview 23
parameters 137
syntax 137

secure messaging
overview 33

secure messaging for keys callable service (CSNBSKY)
format 242, 289
parameters 242
syntax 242, 289

Secure messaging for keys callable service
(CSNBSKY) 242

secure messaging for PINs callable service (CSNBSPN)
format 245
parameters 245
syntax 245

Secure messaging for PINs callable service
(CSNBSPN) 245

Secure Sockets Layer (SSL) 25
security considerations 8
segmenting

control keywords 193, 198, 202
definition 431
rule, large data object 431

sequence number parameter
encrypted PIN translate callable service 235

sequences of callable service 34
SET block compose callable service (CSNDSBC) 249

format 249
overview 52
parameters 249
syntax 249

SET block decompose callable service
(CSNDSBD) 253

format 254
overview 52
paramters 254
syntax 254

SET protocol 51
SET Secure Electronic Transaction 51
short blocks 171
shortcut keys 451
signature bit length parameter 268
signature field length parameter

digital signature generate callable service 268
digital signature verify callable service 272

signature field parameter
digital signature generate callable service 269
digital signature verify callable service 272

single-length key
key length 85
multiple decipherment 434
multiple encipherment 434
purpose 36, 37
using 18

source key identifier length parameter
PKA key import callable service 278
PKA public key extract callable service 292

source key identifier parameter
data key export callable service 71
key export callable service 80
key import callable service 95
PKA key import callable service 278
PKA public key extract callable service 292
transform CDMF key callable service 152

source key token length parameter
prohibit export extended callable service 135

source text parameter
character/nibble conversion callable service 306
code conversion callable service 308
X9.9 data editing callable service 310

special secure mode 9
SRB, scheduling 8
SSL support 25
symmetric key decipher callable service (CSNBSYD)

format 178
parameters 178
syntax 178

symmetric key encipher callable service (CSNBSYE)
format 183
parameters 183
syntax 183

symmetric key export callable service (CSNDSYX)
format 140
overview 24
parameters 140
syntax 140

symmetric key generate callable service (CSNDSYG)
format 143
overview 24
parameters 143
syntax 143

symmetric key import callable service (CSNDSYI)
format 147
overview 24
parameters 147
syntax 147

syntax for callable service 3

T
target key identifier length parameter 279
target key identifier parameter 279

data key export callable service 72
key export callable service 81
key import callable service 96
symmetric key import callable service 150
transform CDMF key callable service 152

target key token parameter
encrypted PIN generate callable service 68

target public key token length parameter 292
target public key token parameter 292
target text parameter

character/nibble conversion callable service 306
code conversion callable service 308
X9.9 data editing callable service 310

Index 469

text id in parameter
ciphertext translate callable service 161
MAC generate callable service 195
MAC verify callable service 199
MDC generate callable service 203
one-way hash generate callable service 207

text id out parameter
ciphertext translate callable service 162

text in parameter
ciphertext translate callable service 161

text length parameter
character/nibble conversion callable service 306
ciphertext translate callable service 161
code conversion callable service 308
cryptographic variable encipher callable service 69
decipher callable service 165
encipher callable service 173
MAC generate callable service 193
MAC generation callable service 197
MDC generate callable service 201
one-way hash generate callable service 206
X9.9 data editing callable service 309

text out parameter
ciphertext translate callable service 161

text parameter
MAC generate callable service 193
MAC generation callable service 197
MDC generate callable service 202
one-way hash generate callable service 206

text, translating 159
TKE

overview 33
token validation value (TVV) 366
trailing short blocks 171
transform CDMF key algorithm 442
transform CDMF key callable service (CSNBTCK)

format 151
overview 24
parameters 151
syntax 151

transformed shortened DES key 151
transport key 18
transport key variant 14
triple-length key

key length 85
triple-length keys

multiple encipherment 437
mutiple decipherment 438

Trusted Key Entry
overview 33

types of keys 17

U
UKPT

format 214
user derived key

generating 153
processing rules 154

utilities
character/nibble conversion 305

utilities (continued)
code conversion 307
key token build 109
PKA key token build 279
X9.9 data editing 308

V
verification pattern parameter 108
verification pattern, generating and verifying 105
verifying data integrity and authenticity 189
VISA CVV service generate callable service

(CSNBCSG) 258
format 259
parameters 259
syntax 259

VISA CVV service verify callable service
(CSNBCSV) 261

format 262
parameters 262
syntax 262

VISA PVV 217
generating 220

VISA-1 235
VISA-2 PIN block format 212, 420
VISA-3 PIN block format 212, 420
VISA-4 PIN block format 212
VISA-PVV algorithm 224, 238

X
X9.9 data editing callable service (CSNB9ED)

format 308
overview 34
parameters 308
syntax 308

X9.9-1 keyword 193, 198

470 z/OS V1R3.0 ICSF Application Programmer’s Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
Integrated Cryptographic Service Facility
Application Programmer’s Guide

Publication No. SA22-7522-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7522-02

SA22-7522-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7522-02

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How To Use This Book
	Where To Find More Information
	Related Publications
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Do You Have Problems, Comments, or Suggestions?

	Summary of changes
	Part 1. IBM CCA Programming
	Chapter 1. Introducing Programming for the IBM CCA
	Callable Service Syntax
	Callable Services with ALET Parameters
	Rules for Defining Parameters and Attributes
	Parameter Definitions
	Return and Reason Codes
	Exit Data Length and Exit Data
	Key Identifier for Key Token

	Invocation Requirements
	Security Considerations

	Performance Considerations
	Special Secure Mode
	Using the Callable Services
	When the Call Succeeds
	When the Call Does Not Succeed

	Linking a Program with the ICSF Callable Services

	Chapter 2. Introducing DES Cryptography and Using DES Callable Services
	Functions of the DES Cryptographic Keys
	Key Separation
	Master Key Variant
	Transport Key Variant
	Key Forms
	DES Key Flow

	Key Token
	Control Vector
	Types of Keys
	Other Considerations
	Clear Keys

	Generating and Managing DES Keys
	Key Generator Utility Program
	Common Cryptographic Architecture DES Key Management Services
	Clear Key Import Callable Service
	Control Vector Generate Callable Service
	Control Vector Translate Callable Service
	Cryptographic Variable Encipher Callable Service
	Data Key Export Callable Service
	Data Key Import Callable Service
	Diversified Key Generate Callable Service
	Key Export Callable Service
	Key Generate Callable Service
	Key Import Callable Service
	Key Part Import Callable Service
	Key Test Callable Service
	Key Token Build Callable Service
	Key Translate Callable Service
	Multiple Clear Key Import Callable Service
	Multiple Secure Key Import Callable Service
	Prohibit Export Callable Service
	Prohibit Export Extended Callable Service
	Random Number Generate Callable Service
	Secure Key Import Callable Service
	Symmetric Key Export Callable Service
	Symmetric Key Generate Callable Service
	Symmetric Key Import Callable Service
	Transform CDMF Key Callable Service
	User Derived Key Callable Service

	Callable Services for Dynamic CKDS Update
	Key Record Create Callable Service
	Key Record Delete Callable Service
	Key Record Read Callable Service
	Key Record Write Callable Service

	Callable Services that Support Secure Sockets Layer (SSL)
	PKA Decrypt Callable Service
	PKA Encrypt Callable Service

	System Encryption Algorithm
	ANSI X9.17 Key Management Services
	Key Generate Callable Service Used to Generate an AKEK
	ANSI X9.17 EDC Generate Callable Service
	ANSI X9.17 Key Export Callable Service
	ANSI X9.17 Key Import Callable Service
	ANSI X9.17 Key Translate Callable Service
	ANSI X9.17 Transport Key Partial Notarize Callable Service

	Enciphering and Deciphering Data
	Encoding and Decoding Data
	Translating Ciphertext
	Managing Data Integrity and Message Authentication
	Message Authentication Code Processing
	MAC Generation Callable Service
	MAC Verification Callable Service

	Hashing Functions
	One-Way Hash Generate Callable Service
	MDC Generation Callable Service

	Managing Personal Authentication
	Verifying Credit Card Data
	Clear PIN Encrypt Callable Service
	Clear PIN Generate Alternate Callable Service
	Clear PIN Generate Callable Service
	Encrypted PIN Generate Callable Service
	Encrypted PIN Translate Callable Service
	Encrypted PIN Verify Callable Service

	Secure Messaging
	Trusted Key Entry (TKE) Support
	Utilities
	Character/Nibble Conversion Callable Services
	Code Conversion Callable Services
	X9.9 Data Editing Callable Service

	Typical Sequences of ICSF Callable Services
	Key Forms and Types Used in the Key Generate Callable Service
	Generating an Operational Key
	Generating an Importable Key
	Generating an Exportable Key
	Examples of Single-Length Keys in One Form Only
	Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of IMEX Single-Length and Double-Length Keys in Two Forms
	Examples of EXEX Single-Length and Double-Length Keys in Two Forms
	Generating AKEKs

	Using the Ciphertext Translate Callable Service
	Summary of the DES Callable Services

	Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services
	PKA Key Algorithms
	The RSA Algorithm
	Digital Signature Standard (DSS)

	PKA Master Keys
	PKA Callable Services
	Callable Services Supporting Digital Signatures
	Digital Signature Generate Callable Service
	Digital Signature Verify Callable Service

	Callable Services for PKA Key Management
	PKA Key Generate Callable Service
	PKA Key Import Callable Service
	PKA Key Token Build Callable Service
	PKA Key Token Change Callable Service
	PKA Public Key Extract Callable Service

	Callable Services to Update The Public Key Data Set (PKDS)
	PKDS Record Create Callable Service
	PKDS Record Delete Callable Service
	PKDS Record Read Callable Service
	PKDS Record Write Callable Service

	Callable Services for Working with Retained Private Keys
	Retained Key Delete Callable Service
	Retained Key List Callable Service

	Callable Services for SET Secure Electronic Transaction
	SET Block Compose Callable Service
	SET Block Decompose Callable Service

	PKA Key Tokens
	PKA Key Management
	Invocation Requirements
	Security and Integrity of the Token
	Key Identifier for PKA Key Token
	Key Label
	Key Token

	The Transaction Security System and ICSF Portability
	Summary of the PKA Callable Services

	Part 2. CCA Callable Services
	Chapter 4. Managing DES Cryptographic Keys
	Clear Key Import (CSNBCKI)
	Format
	Parameters
	Usage Note

	Control Vector Generate (CSNBCVG)
	Format
	Parameters
	Usage Notes

	Control Vector Translate (CSNBCVT)
	Format
	Parameters
	Restriction
	Usage Notes

	Cryptographic Variable Encipher (CSNBCVE)
	Format
	Parameters
	Restrictions
	Usage Note

	Data Key Export (CSNBDKX)
	Format
	Parameters
	Usage Note

	Data Key Import (CSNBDKM)
	Format
	Parameters
	Restriction
	Usage Notes

	Diversified Key Generate (CSNBDKG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Export (CSNBKEX)
	Format
	Parameters
	Usage Notes

	Key Generate (CSNBKGN)
	Format
	Parameters
	Restriction
	Usage Notes

	Key Import (CSNBKIM)
	Format
	Parameters
	Usage Notes

	Key Part Import (CSNBKPI)
	Format
	Parameters
	Restriction
	Usage Note
	Related Information

	Key Record Create (CSNBKRC)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Record Delete (CSNBKRD)
	Format
	Parameters
	Restrictions

	Key Record Read (CSNBKRR)
	Format
	Parameters
	Restrictions

	Key Record Write (CSNBKRW)
	Format
	Parameters
	Restrictions
	Related Information

	Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)
	Format
	Parameters
	Usage Notes

	Key Token Build (CSNBKTB)
	Format
	Parameters
	Usage Notes
	Related Information

	Key Translate (CSNBKTR)
	Format
	Parameters
	Restrictions
	Usage Note

	Multiple Clear Key Import (CSNBCKM)
	Format
	Parameters
	Usage Note

	Multiple Secure Key Import (CSNBSKM)
	Format
	Parameters
	Usage Notes

	PKA Decrypt (CSNDPKD)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Encrypt (CSNDPKE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Prohibit Export (CSNBPEX)
	Format
	Parameters
	Restriction
	Usage Note

	Prohibit Export Extended (CSNBPEXX)
	Format
	Parameters

	Random Number Generate (CSNBRNG)
	Format
	Parameters

	Secure Key Import (CSNBSKI)
	Format
	Parameters

	Symmetric Key Export (CSNDSYX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Generate (CSNDSYG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Import (CSNDSYI)
	Format
	Parameters
	Restrictions
	Usage Notes

	Transform CDMF Key (CSNBTCK)
	Format
	Parameters
	Restrictions
	Usage Notes

	User Derived Key (CSFUDK)
	Format
	Parameters
	Usage Note

	Chapter 5. Protecting Data
	Modes of Operation
	Cipher Block Chaining (CBC) Mode
	Electronic Code Book (ECB) Mode
	Triple DES Encryption

	Processing Rules
	Ciphertext Translate (CSNBCTT and CSNBCTT1)
	Choosing Between CSNBCTT and CSNBCTT1
	Format
	Parameters
	Restrictions
	Usage Note

	Decipher (CSNBDEC and CSNBDEC1)
	Choosing Between CSNBDEC and CSNBDEC1
	Format
	Parameters
	Restrictions
	Usage Note
	Related Information

	Decode (CSNBDCO)
	Considerations
	Format
	Parameters
	Restriction

	Encipher (CSNBENC and CSNBENC1)
	Choosing between CSNBENC and CSNBENC1
	Format
	Parameters
	Restrictions
	Related Information

	Encode (CSNBECO)
	Considerations
	Format
	Parameters
	Restriction

	Symmetric Key Decipher (CSNBSYD)
	Format
	Parameters
	Usage Notes

	Symmetric Key Encipher (CSNBSYE)
	Format
	Parameters
	Usage Notes

	Chapter 6. Verifying Data Integrity and Authenticating Messages
	How MACs are Used
	How Hashing Functions Are Used
	How MDCs Are Used

	MAC Generate (CSNBMGN and CSNBMGN1)
	Choosing Between CSNBMGN and CSNBMGN1
	Format
	Parameters
	Usage Notes
	Related Information

	MAC Verify (CSNBMVR and CSNBMVR1)
	Choosing Between CSNBMVR and CSNBMVR1
	Format
	Parameters
	Usage Notes
	Related Information

	MDC Generate (CSNBMDG and CSNBMDG1)
	Choosing Between CSNBMDG and CSNBMDG1
	Format
	Parameters
	Usage Notes
	Related Information

	One-Way Hash Generate (CSNBOWH and CSNBOWH1)
	Format
	Parameters
	Usage Note

	Chapter 7. Financial Services
	How Personal Identification Numbers (PINs) are Used
	How VISA Card Verification Values Are Used
	Translating Data and PINs in Networks
	PIN Callable Services
	Generating a PIN
	Encrypting a PIN
	Generating a PIN Validation Value from an Encrypted PIN Block
	Verifying a PIN
	Translating a PIN
	Algorithms for Generating and Verifying a PIN
	Using PINs on Different Systems
	PIN-Encrypting Keys

	The PIN Profile
	PIN Block Format
	Format Control
	Pad Digit
	Recommendations for the Pad Digit
	Current Key Serial Number
	Clear PIN Encrypt (CSNBCPE)
	Format
	Parameters
	Restrictions
	Usage Note

	Clear PIN Generate (CSNBPGN)
	Format
	Parameters
	Restriction
	Usage Note
	Related Information

	Clear PIN Generate Alternate (CSNBCPA)
	Format
	Parameters
	Restriction
	Usage Notes

	Encrypted PIN Generate (CSNBEPG)
	Format
	Parameters
	Restrictions
	Usage Note

	Encrypted PIN Translate (CSNBPTR)
	Format
	Parameters
	Restriction
	Usage Notes

	Encrypted PIN Verify (CSNBPVR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Secure Messaging for Keys (CSNBSKY)
	Format
	Parameters
	Restrictions
	Usage Notes

	Secure Messaging for PINs (CSNBSPN)
	Format
	Parameters
	Restrictions
	Usage Notes

	SET Block Compose (CSNDSBC)
	Format
	Parameters
	Restrictions
	Usage Notes

	SET Block Decompose (CSNDSBD)
	Format
	Parameters
	Restrictions
	Usage Notes

	VISA CVV Service Generate (CSNBCSG)
	Format
	Parameters
	Restriction

	VISA CVV Service Verify (CSNBCSV)
	Format
	Parameters
	Restrictions

	Chapter 8. Using Digital Signatures
	Digital Signature Generate (CSNDDSG)
	Format
	Parameters
	Restrictions

	Digital Signature Verify (CSNDDSV)
	Format
	Parameters
	Restrictions
	Usage Note

	Chapter 9. Managing PKA Cryptographic Keys
	PKA Key Generate (CSNDPKG)
	Format
	Parameters
	Restriction
	Usage Note

	PKA Key Import (CSNDPKI)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Key Token Build (CSNDPKB)
	Format
	Parameters
	Usage Note

	PKA Key Token Change (CSNDKTC)
	Format
	Parameters
	Usage Note

	PKA Public Key Extract (CSNDPKX)
	Format
	Parameters
	Restriction
	Usage Notes

	PKDS Record Create (CSNDKRC)
	Format
	Parameters
	Restriction
	Usage Note

	PKDS Record Delete (CSNDKRD)
	Format
	Parameters
	Restrictions
	Usage Note

	PKDS Record Read (CSNDKRR)
	Format
	Parameters
	Restriction
	Usage Note

	PKDS Record Write (CSNDKRW)
	Format
	Parameters
	Restrictions
	Usage Note

	Retained Key Delete (CSNDRKD)
	Format
	Parameters
	Restriction
	Usage Notes

	Retained Key List (CSNDRKL)
	Format
	Parameters
	Restriction
	Usage Notes

	Chapter 10. Utilities
	Character/Nibble Conversion (CSNBXBC and CSNBXCB)
	Format
	Parameters
	Usage Notes

	Code Conversion (CSNBXEA and CSNBXAE)
	Format
	Parameters
	Usage Notes

	X9.9 Data Editing (CSNB9ED)
	Format
	Parameters
	Usage Notes

	Chapter 11. Trusted Key Entry Workstation Interfaces
	PCI Interface Callable Service (CSFPCI)
	Format
	Parameters
	Restriction
	Usage Note

	PKSC Interface Callable Service (CSFPKSC)
	Format
	Parameters
	Restrictions

	Chapter 12. Managing Keys According to the ANSI X9.17 Standard
	ANSI X9.17 EDC Generate (CSNAEGN)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Export (CSNAKEX)
	Format
	Parameters
	Usage Note

	ANSI X9.17 Key Import (CSNAKIM)
	Format
	Parameters
	Usage Note

	ANSI X9.17 Key Translate (CSNAKTR)
	Format
	Parameters
	Usage Note

	ANSI X9.17 Transport Key Partial Notarize (CSNATKN)
	Format
	Parameters
	Usage Note

	Appendix A. ICSF and TSS Return and Reason Codes
	ICSF Return Codes and Reason Codes
	Return Codes
	ICSF Reason Codes for Return Code 0 (0)
	ICSF Reason Codes for Return Code 4 (4)
	ICSF Reason Codes for Return Code 8 (8)
	ICSF Reason Codes for Return Code C (12)
	ICSF Reason Codes for Return Code 10 (16)

	Transaction Security System Return Codes and Reason Codes
	TSS Reason Codes for Return Code 0 (0)
	TSS Reason Codes for Return Code 4 (4)
	Reason Codes for Return Code 8 (8)
	TSS Reason Codes for Return Code C (12)
	TSS Reason Codes for Return Code 10 (16)

	Appendix B. Key Token Formats
	Format of the DES Internal Key Token
	Token Validation Value

	DES External Key Token
	DES Null Key Token
	Format of the RSA Public Key Token
	Format of the DSS Public Key Token
	Format of RSA Private External Key Tokens
	RSA Private Key Token, 1024-bit Modulus-Exponent External Form
	RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Form

	Format of the DSS Private External Key Token
	Format of the RSA Private Internal Key Token
	RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for Cryptographic Coprocessor Feature
	RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCI Cryptographic Coprocessor
	RSA Private Key Token, 2048-bit Chinese Remainder Theorem Internal Form

	Format of the DSS Private Internal Key Token
	PKA Null Key Token

	Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service
	Control Vector Table
	Specifying a Control-Vector-Base Value

	Changing Control Vectors with the Control Vector Translate Callable Service
	Providing the Control Information for Testing the Control Vectors
	Mask Array Preparation
	Selecting the Key-Half Processing Mode
	When the Target Key-Token CV Is Null
	Control Vector Translate Example

	Appendix D. Coding Examples
	C
	COBOL
	Assembler H
	PL/1

	Appendix E. Using ICSF with BSAFE
	Some BSAFE Basics
	Computing Message Digests and Hashes
	Generating Random Numbers
	Encrypting and Decrypting with DES
	Generating and Verifying RSA Digital Signatures

	Encrypting and Decrypting with RSA
	Using the New Function Calls in Your BSAFE Application
	Using the BSAFE KI_TOKEN
	ICSF Triple DES via BSAFE
	Retrieving ICSF Error Information

	Appendix F. Cryptographic Algorithms and Processes
	PIN Formats and Algorithms
	PIN Notation
	PIN Block Formats
	ANSI X9.8
	ISO Format 1
	ISO Format 2
	VISA Format 2
	VISA Format 3
	IBM 4700 Encrypting PINPAD Format
	IBM 3624 Format
	IBM 3621 Format
	ECI Format 2
	ECI Format 3

	PIN Extraction Rules
	Encrypted PIN Verify Callable Service
	Clear PIN Generate Alternate Callable Service
	Encrypted PIN Translate Callable Service

	IBM PIN Algorithms
	3624 PIN Generation Algorithm
	German Banking Pool PIN Generation Algorithm
	PIN Offset Generation Algorithm
	3624 PIN Verification Algorithm
	German Banking Pool PIN Verification Algorithm

	VISA PIN Algorithms
	PVV Generation Algorithm
	PVV Verification Algorithm
	Interbank PIN Generation Algorithm

	Cipher Processing Rules
	CBC and ANSI X3.106
	ANSI X9.23 and IBM 4700
	Segmenting
	Cipher Last-Block Rules
	CUSP Considerations
	The Information Protection System (IPS)

	Multiple Decipherment and Encipherment
	Multiple Encipherment of Single-length Keys
	Multiple Decipherment of Single-length Keys
	Multiple Encipherment of Double-length Keys
	Multiple Decipherment of Double-length Keys
	Multiple Encipherment of Triple-length Keys
	Multiple Decipherment of Triple-length Keys

	PKA92 Key Format and Encryption Process
	ANSI X9.17 Partial Notarization Method
	Partial Notarization
	Notations Used in the Calculations
	Partial Notarization Calculation for a Double-Length AKEK
	Partial Notarization Calculation for a Single-Length AKEK

	Transform CDMF Key Algorithm

	Appendix G. EBCDIC and ASCII Default Conversion Tables
	Appendix H. Access Control Points and Callable Services
	Appendix I. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

